scholarly journals Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte

PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009797
Author(s):  
Luis Fernando Samayoa ◽  
Bode A. Olukolu ◽  
Chin Jian Yang ◽  
Qiuyue Chen ◽  
Markus G. Stetter ◽  
...  

Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, small-effect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte.

2021 ◽  
Author(s):  
James B. Holland ◽  
L.F. Samayoa ◽  
B.A. Olukolu ◽  
C.J. Yang ◽  
Q. Chen ◽  
...  

Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to rare large-effect variation versus potentially more common variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load predicted from sequence data in the maize population. For many traits - and more commonly in maize - genetic variation among self-fertilized families was less than expected based on additive and dominance variance estimated in outcrossed families, suggesting that a negative covariance between additive and homozygous dominance effects limits the variation available to selection under partial inbreeding. We identified quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, small-effect recessive variation underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following to the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against large effect variants, but polygenic load is harder to purge and segregating mutational burden increased in maize compared to teosinte.


Nature ◽  
2021 ◽  
Vol 590 (7845) ◽  
pp. 290-299 ◽  
Author(s):  
Daniel Taliun ◽  
◽  
Daniel N. Harris ◽  
Michael D. Kessler ◽  
Jedidiah Carlson ◽  
...  

AbstractThe Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.


Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1429-1437
Author(s):  
Oliver G Pybus ◽  
Andrew Rambaut ◽  
Paul H Harvey

Abstract We describe a unified set of methods for the inference of demographic history using genealogies reconstructed from gene sequence data. We introduce the skyline plot, a graphical, nonparametric estimate of demographic history. We discuss both maximum-likelihood parameter estimation and demographic hypothesis testing. Simulations are carried out to investigate the statistical properties of maximum-likelihood estimates of demographic parameters. The simulations reveal that (i) the performance of exponential growth model estimates is determined by a simple function of the true parameter values and (ii) under some conditions, estimates from reconstructed trees perform as well as estimates from perfect trees. We apply our methods to HIV-1 sequence data and find strong evidence that subtypes A and B have different demographic histories. We also provide the first (albeit tentative) genetic evidence for a recent decrease in the growth rate of subtype B.


2018 ◽  
Author(s):  
Sandra Oliveira ◽  
Alexander Hübner ◽  
Anne-Maria Fehn ◽  
Teresa Aço ◽  
Fernanda Lages ◽  
...  

AbstractSouthwestern Angola is a region characterized by contact between indigenous foragers and incoming food-producers, involving genetic and cultural exchanges between peoples speaking Kx’a, Khoe-Kwadi and Bantu languages. Although present-day Bantu-speakers share a patrilocal residence pattern and matrilineal principle of clan and group membership, a highly stratified social setting divides dominant pastoralists from marginalized groups that subsist on alternative strategies and have previously been though to have pre-Bantu origins. Here, we compare new high-resolution sequence data from 2.3 Mb of the non-recombining Y chromosome (NRY) from 170 individuals with previously reported mitochondrial genomes (mtDNA), to investigate the population history of seven representative southwestern Angolan groups (Himba, Kuvale, Kwisi, Kwepe, Twa, Tjimba, !Xun) and to study the causes and consequences of sex-biased processes in their genetic variation. We found no clear link between the formerly Kwadi-speaking Kwepe and pre-Bantu eastern African migrants, and no pre-Bantu NRY lineages among Bantu-speaking groups, except for small amounts of “Khoisan” introgression. We therefore propose that irrespective of their subsistence strategies, all Bantu-speaking groups of the area share a male Bantu origin. Additionally, we show that in Bantu-speaking groups, the levels of among-group and between-group variation are higher for mtDNA than for NRY. These results, together with our previous demonstration that the matriclanic systems of southwestern Angolan Bantu groups are genealogically consistent, suggest that matrilineality strongly enhances both female population sizes and interpopulation mtDNA variation.


2020 ◽  
Author(s):  
David Curtis

Rare genetic variants in LDLR, APOB and PCSK9 are known causes of familial hypercholesterolaemia and it is expected that rare variants in other genes will also have effects on hyperlipidaemia risk although such genes remain to be identified. The UK Biobank consists of a sample of 500,000 volunteers and exome sequence data is available for 50,000 of them. 11,490 of these were classified as hyperlipidaemia cases on the basis of having a relevant diagnosis recorded and/or taking lipid-lowering medication while the remaining 38,463 were treated as controls. Variants in each gene were assigned weights according to rarity and predicted impact and overall weighted burden scores were compared between cases and controls, including population principal components as covariates. One biologically plausible gene, HUWE1, produced statistically significant evidence for association after correction for testing 22,028 genes with a signed log10 p value (SLP) of -6.15, suggesting a protective effect of variants in this gene. Other genes with uncorrected p<0.001 are arguably also of interest, including LDLR (SLP=3.67), RBP2 (SLP=3.14), NPFFR1 (SLP=3.02) and ACOT9 (SLP=-3.19). Gene set analysis indicated that rare variants in genes involved in metabolism and energy can influence hyperlipidaemia risk. Overall, the results provide some leads which might be followed up with functional studies and which could be tested in additional data sets as these become available. This research has been conducted using the UK Biobank Resource.


2015 ◽  
Vol 112 (33) ◽  
pp. 10200-10207 ◽  
Author(s):  
Jan Janouškovec ◽  
Denis V. Tikhonenkov ◽  
Fabien Burki ◽  
Alexis T. Howe ◽  
Martin Kolísko ◽  
...  

Apicomplexans are a major lineage of parasites, including causative agents of malaria and toxoplasmosis. How such highly adapted parasites evolved from free-living ancestors is poorly understood, particularly because they contain nonphotosynthetic plastids with which they have a complex metabolic dependency. Here, we examine the origin of apicomplexan parasitism by resolving the evolutionary distribution of several key characteristics in their closest free-living relatives, photosynthetic chromerids and predatory colpodellids. Using environmental sequence data, we describe the diversity of these apicomplexan-related lineages and select five species that represent this diversity for transcriptome sequencing. Phylogenomic analysis recovered a monophyletic lineage of chromerids and colpodellids as the sister group to apicomplexans, and a complex distribution of retention versus loss for photosynthesis, plastid genomes, and plastid organelles. Reconstructing the evolution of all plastid and cytosolic metabolic pathways related to apicomplexan plastid function revealed an ancient dependency on plastid isoprenoid biosynthesis, predating the divergence of apicomplexan and dinoflagellates. Similarly, plastid genome retention is strongly linked to the retention of two genes in the plastid genome, sufB and clpC, altogether suggesting a relatively simple model for plastid retention and loss. Lastly, we examine the broader distribution of a suite of molecular characteristics previously linked to the origins of apicomplexan parasitism and find that virtually all are present in their free-living relatives. The emergence of parasitism may not be driven by acquisition of novel components, but rather by loss and modification of the existing, conserved traits.


AoB Plants ◽  
2020 ◽  
Author(s):  
Peng-Cheng Fu ◽  
Alex D Twyford ◽  
Shan-Shan Sun ◽  
Hong-Yu Wang ◽  
Ming-Ze Xia ◽  
...  

Abstract The Qinghai-Tibetan Plateau (QTP) and adjacent areas are centers of diversity for several alpine groups. Although the QTP acted as a source area for diversification of the alpine genus Gentiana, the evolutionary process underlying diversity in this genus, especially the formation of narrow endemics, is still poorly understood. Hybridization has been proposed as a driver of plant endemism in the QTP but few cases have been documented with genetic data. Here, we describe a new endemic species in Gentiana section Cruciata as G. hoae sp. nov., and explore its evolutionary history with complete plastid genomes and nuclear ribosomal ITS sequence data. Genetic divergence within G. hoae approximately 3 million years ago was followed by postglacial expansion on the QTP, suggesting Pleistocene glaciations as a key factor shaping the population history of G. hoae. Furthermore, a mismatch between plastid and nuclear data suggest that G. hoae participated in historical hybridization, while population sequencing show this species continues to hybridize with the co-occurring congener G. straminea in three locations. Our results indicate that hybridization may be a common process in the evolution of Gentiana and may be widespread among recently diverged taxa of the QTP.


Biostatistics ◽  
2019 ◽  
Author(s):  
Jingchunzi Shi ◽  
Michael Boehnke ◽  
Seunggeun Lee

Summary Trans-ethnic meta-analysis is a powerful tool for detecting novel loci in genetic association studies. However, in the presence of heterogeneity among different populations, existing gene-/region-based rare variants meta-analysis methods may be unsatisfactory because they do not consider genetic similarity or dissimilarity among different populations. In response, we propose a score test under the modified random effects model for gene-/region-based rare variants associations. We adapt the kernel regression framework to construct the model and incorporate genetic similarities across populations into modeling the heterogeneity structure of the genetic effect coefficients. We use a resampling-based copula method to approximate asymptotic distribution of the test statistic, enabling efficient estimation of p-values. Simulation studies show that our proposed method controls type I error rates and increases power over existing approaches in the presence of heterogeneity. We illustrate our method by analyzing T2D-GENES consortium exome sequence data to explore rare variant associations with several traits.


Sign in / Sign up

Export Citation Format

Share Document