scholarly journals A gene expression comparison of Trypanosoma brucei and Trypanosoma congolense in the bloodstream of the mammalian host reveals species-specific adaptations to density-dependent development

2018 ◽  
Vol 12 (10) ◽  
pp. e0006863 ◽  
Author(s):  
Eleanor Silvester ◽  
Alasdair Ivens ◽  
Keith R. Matthews
eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Harriet Lane-Serff ◽  
Paula MacGregor ◽  
Lori Peacock ◽  
Olivia JS Macleod ◽  
Christopher Kay ◽  
...  

The haptoglobin-haemoglobin receptor of the African trypanosome species, Trypanosoma brucei, is expressed when the parasite is in the bloodstream of the mammalian host, allowing it to acquire haem through the uptake of haptoglobin-haemoglobin complexes. Here we show that in Trypanosoma congolense this receptor is instead expressed in the epimastigote developmental stage that occurs in the tsetse fly, where it acts as a haemoglobin receptor. We also present the structure of the T. congolense receptor in complex with haemoglobin. This allows us to propose an evolutionary history for this receptor, charting the structural and cellular changes that took place as it adapted from a role in the insect to a new role in the mammalian host.


2021 ◽  
Vol 6 ◽  
pp. 36
Author(s):  
Michele Tinti ◽  
Anna Kelner-Mirôn ◽  
Lizzie J. Marriott ◽  
Michael A.J. Ferguson

Background: The contrasting physiological environments of Trypanosoma brucei procyclic (insect vector) and bloodstream (mammalian host) forms necessitates deployment of different molecular processes and, therefore, changes in protein expression. Transcriptional regulation is unusual in T. brucei because the arrangement of genes is polycistronic; however, genes which are transcribed together are subsequently cleaved into separate mRNAs by trans-splicing. Following pre-mRNA processing, the regulation of mature mRNA stability is a tightly controlled cellular process. While many stage-specific transcripts have been identified, previous studies using RNA-seq suggest that changes in overall transcript level do not necessarily reflect the abundance of the corresponding protein. Methods: To better understand the regulation of gene expression in T. brucei, we performed a bioinformatic analysis of RNA-seq on total, sub-polysomal, and polysomal mRNA samples. We further cross-referenced our dataset with a previously published proteomics dataset to identify new protein coding sequences. Results: Our analyses showed that several long non-coding RNAs are more abundant in the sub-polysome samples, which possibly implicates them in regulating cellular differentiation in T. brucei. We also improved the annotation of the T.brucei genome by identifying new putative protein coding transcripts that were confirmed by mass spectrometry data. Conclusions: Several long non-coding RNAs are more abundant in the sub-polysome cellular fractions and might pay a role in the regulation of gene expression. We hope that these data will be of wide general interest, as well as being of specific value to researchers studying gene regulation expression and life stage transitions in T. brucei.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 683 ◽  
Author(s):  
Terry K. Smith ◽  
Frédéric Bringaud ◽  
Derek P. Nolan ◽  
Luisa M. Figueiredo

Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.


2021 ◽  
Author(s):  
Gerardo I. Zardi ◽  
Katy Rebecca Nicastro ◽  
Christopher D. McQuaid ◽  
Monique de Jager ◽  
Johan van de Koppel ◽  
...  

2019 ◽  
Vol 116 (45) ◽  
pp. 22774-22782 ◽  
Author(s):  
Kirsty R. McWilliam ◽  
Alasdair Ivens ◽  
Liam J. Morrison ◽  
Monica R. Mugnier ◽  
Keith R. Matthews

African trypanosomes use an extreme form of antigenic variation to evade host immunity, involving the switching of expressed variant surface glycoproteins by a stochastic and parasite-intrinsic process. Parasite development in the mammalian host is another feature of the infection dynamic, with trypanosomes undergoing quorum sensing (QS)-dependent differentiation between proliferative slender forms and arrested, transmissible, stumpy forms. Longstanding experimental studies have suggested that the frequency of antigenic variation and transmissibility may be linked, antigen switching being higher in developmentally competent, fly-transmissible, parasites (“pleomorphs”) than in serially passaged “monomorphic” lines that cannot transmit through flies. Here, we have directly tested this tenet of the infection dynamic by using 2 experimental systems to reduce pleomorphism. Firstly, lines were generated that inducibly lose developmental capacity through RNAi-mediated silencing of the QS signaling machinery (“inducible monomorphs”). Secondly, de novo lines were derived that have lost the capacity for stumpy formation by serial passage (“selected monomorphs”) and analyzed for their antigenic variation in comparison to isogenic preselected populations. Analysis of both inducible and selected monomorphs has established that antigen switch frequency and developmental capacity are independently selected traits. This generates the potential for diverse infection dynamics in different parasite populations where the rate of antigenic switching and transmission competence are uncoupled. Further, this may support the evolution, maintenance, and spread of important trypanosome variants such as Trypanosoma brucei evansi that exploit mechanical transmission.


2014 ◽  
Vol 203 (3-4) ◽  
pp. 270-275 ◽  
Author(s):  
Annelise Sahin ◽  
Corinne Asencio ◽  
Julien Izotte ◽  
Davita Pillay ◽  
Virginie Coustou ◽  
...  

Parasitology ◽  
1982 ◽  
Vol 85 (1) ◽  
pp. 127-148 ◽  
Author(s):  
R. J. Gilbert ◽  
B. A. Newton

SUMMARY[14C[ethidium bromide has been used to determine drug levels in tissues and body fluids of rabbits and calves following intramuscular injection. Uninfected and Trypanosoma brucei- or Trypanosoma congolense-infected animals were studied. Blood and tissue fluid levels reached a maximum within 1 h and then fell rapidly; after 96 h 80–90% of the radioactivity injected had been excreted, approximately one third in urine and two thirds in faeces. By 1 h after injection of 1 mg [14C]ethidium/kg into a T. congolense-infected calf, 70–80% of the radioactivity in blood was found to be bound to trypanosomes. Doses of 1 or 10 mg/kg were found not to be curative for T. congolense or T. brucei infections in rabbits; drug treatment resulted in a period of sub-patent parasitaemia which was always followed by a relapse. Examination of the prophylactic action of ethidium in rabbits showed that the drug extended the pre-patent period following trypanosome inoculation but provided no absolute protection. A period of ‘apparent’ prophylaxis observed after drug treatment of infected rabbits has been correlated with the presence of anti-trypanosome IgG in the serum.


2008 ◽  
Vol 7 (7) ◽  
pp. 1168-1179 ◽  
Author(s):  
Yong-Un Baek ◽  
Mingchun Li ◽  
Dana A. Davis

ABSTRACT Iron is an essential nutrient that is severely limited in the mammalian host. Candida albicans encodes a family of 15 putative ferric reductases, which are required for iron acquisition and utilization. Despite the central role of ferric reductases in iron acquisition and mobilization, relatively little is known about the regulatory networks that govern ferric reductase gene expression in C. albicans. Here we have demonstrated the differential regulation of two ferric reductases, FRE2 and FRP1, in response to distinct iron-limited environments. FRE2 and FRP1 are both induced in alkaline-pH environments directly by the Rim101 transcription factor. However, FRP1 but not FRE2 is also induced by iron chelation. We have identified a CCAAT motif as the critical regulatory sequence for chelator-mediated induction and have found that the CCAAT binding factor (CBF) is essential for FRP1 expression in iron-limited environments. We found that a hap5Δ/hap5Δ mutant, which disrupts the core DNA binding activity of CBF, is unable to grow under iron-limited conditions. C. albicans encodes three CBF-dependent transcription factors, and we identified the Hap43 protein as the CBF-dependent transcription factor required for iron-limited responses. These studies provide key insights into the regulation of ferric reductase gene expression in the fungal pathogen C. albicans.


Sign in / Sign up

Export Citation Format

Share Document