scholarly journals Multiple Origins of Knockdown Resistance Mutations in the Afrotropical Mosquito Vector Anopheles gambiae

PLoS ONE ◽  
2007 ◽  
Vol 2 (11) ◽  
pp. e1243 ◽  
Author(s):  
João Pinto ◽  
Amy Lynd ◽  
José L. Vicente ◽  
Federica Santolamazza ◽  
Nadine P. Randle ◽  
...  
Author(s):  
Jianhai Yin ◽  
Frederick Yamba ◽  
Canjun Zheng ◽  
Shuisen Zhou ◽  
Samuel Juana Smith ◽  
...  

Vector control interventions including long-lasting insecticidal nets and indoor residual spraying are important for malaria control and elimination. And effectiveness of these interventions depends entirely on the high level of susceptibility of malaria vectors to insecticides. However, the insecticide resistance in majority of mosquito vector species across African countries is a serious threat to the success of vector control efforts with the extensive use of insecticides, while no data on insecticide resistance was reported from Sierra Leone in the past decade. In the present study, the polymerase chain reaction was applied for the identification of species of 757 dry adult female Anopheles gambiae mosquitoes reared from larvae collected from four districts in Sierra Leone during May and June 2018. And the mutations of kdr, rdl, ace-1 genes in An. gambiae were detected using SNaPshot and sequencing. As a result, one sample from Western Area Rural district belonged to Anopheles melas, and 748 An. gambiae were identified. Furthermore, the rdl mutations, kdr west mutations and ace-1 mutation were found. The overall frequency was 35.7%, 0.3%, 97.6% and 4.5% in A296G rdl, A296S rdl, kdrW and ace-1, respectively. The frequencies of A296G rdl mutation (P < 0.001), kdrW mutation (P = 0.001) and ace-1 mutation (P < 0.001) were unevenly distributed in four districts, respectively, while no statistical significance was found in A296S rdl mutation (P = 0.868). In addition, multiple resistance patterns were also found. In conclusion, multiple mutations involved in insecticide resistance in An. gambiae populations in Sierra Leone were detected in the kdrW, A296G rdl and ace-1 alleles in the present study. It is necessary to monitor vector susceptibility levels to insecticides used in this country, and update the insecticide resistance monitoring and management strategy.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
José L Ruiz ◽  
Lisa C Ranford-Cartwright ◽  
Elena Gómez-Díaz

Abstract Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 146 ◽  
Author(s):  
Aaron Gross ◽  
Jeffrey Bloomquist

Anopheles gambiae Giles (Diptera: Culicidae) is the most prolific malaria vector in sub-Saharan Africa, where widespread insecticide resistance has been reported. An. gambiae laboratory strains are commonly used to study the basic biology of this important mosquito vector, and also in new insecticide discovery programs, where insecticide-susceptible and -resistant strains are often used to screen new molecules for potency and cross-resistance, respectively. This study investigated the toxicity of permethrin, a Type-I pyrethroid insecticide, and etofenprox, a non-ester containing pyrethroid insecticide, against An. gambiae at three life stages. This characterization was performed with susceptible (G3; MRA-112) and resistant (Akdr; MRA-1280) An. gambiae strains; the Akdr strain is known to contain the L1014F mutation in the voltage-sensitive sodium channel. Surprisingly, etofenprox displays a lower level of resistance than permethrin against all stages of mosquitoes, except in a headless larval paralysis assay designed to minimize penetration factors. In first-instar An. gambiae larvae, permethrin had significant resistance, determined by the resistance ratio (RR50 = 5), but etofenprox was not significantly different (RR50 = 3.4) from the wild-type strain. Fourth-instar larvae displayed the highest level of resistance for permethrin (RR50 = 108) and etofenprox (RR50 = 35). Permethrin (PC50 = 2 ppb) and etofenprox (PC50 = 9 ppb) resulted in headless larval paralysis (5-h), but resistance, albeit lower, was still present for permethrin (RR50 = 5) and etofenprox (RR50 = 6.9). In adult female mosquitoes, permethrin displayed higher resistance (RR50 = 14) compared to etofenprox (RR50 = 4.3). The level of etofenprox resistance was different from that previously reported for a similar Akron An. gambiae laboratory strain (MRA-913). The chemical synergists piperonyl butoxide (PBO) and diethyl maleate (DEM) were able to synergize permethrin, but not etofenprox in the resistant strain (Akdr). In conclusion, multiple mechanisms are likely involved in pyrethroid resistance, but resistance profiles are dependent upon selection. Etofenprox is an effective insecticide against An. gambiae in the lab but will likely suffer from resistance in the field.


Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 807-814
Author(s):  
Adalgisa Caccone ◽  
Gi-Sik Min ◽  
Jeffrey R Powell

Abstract For more than 60 years, evolutionary cytogeneticists have been using naturally occurring chromosomal inversions to infer phylogenetic histories, especially in insects with polytene chromosomes. The validity of this method is predicated on the assumption that inversions arise only once in the history of a lineage, so that sharing a particular inversion implies shared common ancestry. This assumption of monophyly has been generally validated by independent data. We present the first clear evidence that naturally occurring inversions, identical at the level of light microscopic examination of polytene chromosomes, may not always be monophyletic. The evidence comes from DNA sequence analyses of regions within or very near the breakpoints of an inversion called the 2La that is found in the Anopheles gambiae complex. Two species, A. merus and A. arabiensis, which are fixed for the “same” inversion, do not cluster with each other in a phylogenetic analysis of the DNA sequences within the 2La. Rather, A. merus 2La is most closely related to strains of A. gambiae homozygous for the 2L+. A. gambiae and A. merus are sister taxa, the immediate ancestor was evidently homozygous 2L+, and A. merus became fixed for an inversion cytologically identical to that in A. arabiensis. A. gambiae is polymorphic for 2La/2L+, and the 2La in this species is nearly identical at the DNA level to that in A. arabiensis, consistent with the growing evidence that introgression has or is occurring between these two most important vectors of malaria in the world. The parallel evolution of the “same” inversion may be promoted by the presence of selectively important genes within the breakpoints.


2021 ◽  
Author(s):  
Hanming Chen ◽  
Qiuming Zhou ◽  
Haowei Dong ◽  
Hao Yuan ◽  
Jie Bai ◽  
...  

Abstract Background: Aedes albopictus is the main vector of dengue fever in China, distributed from north to south in China. Insecticides are an important method to control the mosquitoes, especially in the outbreak of dengue fever, but insecticide resistance raises the risk of failure to control vector-borne diseases. Knockdown resistance (kdr) caused by point mutations in the VGSC gene is a key mechanism that confers resistance to pyrethroids. To explore the characteristics and possible evolution trend of kdr mutation in Ae. albopictus, we analyzed the kdr mutations of field populations in China in this study.Methods: A total of 1 549 Ae. albopictus were collected from 18 sites in China from 2017 to 2019, as well as 50 individuals from three sites in the 1990s. A fragment of approximately 350 bp from part of S6 segment in the VGSC gene domain III was amplified and sequenced. The haplotypes of VGSC gene were recorded and the parsimony network was constructed using TCS 1.21. The data of annual average temperatures (AAT) of collection sites was acquired from national database. The correlation between AAT of the collection site and the kdr mutation rate was analyzed by Pearson Correlation using SPSS 21.0. Results: The overall frequency of mutant allele F1534 is 45.62%. Nine mutant alleles were detected at codon 1534 in fifteen field populations, namely TCC/TCG (S) (38.86%), TTG/CTG/CTC/TTA (L) (3.71%), TGC (C) (2.68%), CGC (R) (0.27%) and TGG (W) (0.10%). Only one mutant allele ACC (T) was found at codon 1532 with frequency of 6.39% in ten field populations. Moreover, multiple mutations at I1532 and F1534 in a sample appeared in five populations. The 1534 mutation rate was significantly positive related to AAT (Coefficient=0.624, p=0.0056), while the 1532 mutation rate was significantly negative related to AAT (Coefficient=-0.645, p=0.0038). Thirteen haplotypes were inferred, in which six mutant haplotypes were formed by one step, and the other six haplotypes were formed by one more mutations. In the samples from 1990s, no mutant allele was detected at codon 1532 of VGSC gene. However, F1534S/TCC was found in HNHK94 with an unexpected frequency of 100%.ConclusionsKdr mutations are widespread in the field populations of Ae. albopictus in China. Two novel mutant alleles F1534W/TGG and F1534R/CGC were the detected. The 1534 kdr mutation appeared in the population of Ae. albopictus no later than 1990s. F1534 mutation rate is positive correlated to AAT, while I1532 mutation rate is negative correlated to AAT. Insecticide using should be carefully managed to slow down the spread of high-resistance Ae. albopictus populations.


Author(s):  
Fereshteh Ghahvechi Khaligh ◽  
Navid Dinparast Djadid ◽  
Mostafa Farmani ◽  
Zahra Asadi Saatlou ◽  
Samira Frooziyan ◽  
...  

Abstract Knockdown resistance (kdr) is a common mechanism of insecticide resistance in head lice to the conventionally used pyrethroid pediculosis and can be the result of various amino acid substitutions within the voltage-sensitive sodium channel (VSSC). In this study, 54 sequences from varied specimens were investigated to monitor well-known resistance mutations and probable new mutations. The Pediculus humanus capitis de Geer specimens were collected from 13 provinces in Iran. The specimens were stored in 70% ethanol until DNA extraction and PCR amplification of ~900-bp fragment of VSSC. The sequences were analyzed using different bioinformatics software for the detection of well-known kdr substitutions and additional mutations potentially associated with kdr resistance in head lice. There were six new and an old (haplotype I) kdr haplotypes within the Iranian head louse population. K794E, F815I, and N818D amino acid substitutions were reported for the first time. The P813H mutation was the most prevalent amino acid substitution in eight provinces. Among 53 sequences, 26 (49%) were homozygous susceptible, and 27 (51%) were heterozygotes. Thus, 51% of the head lice collected in Iran harbored only the P813H allele. The exact test for the Hardy–Weinberg (H–W) equilibrium showed that genotype frequencies differed significantly from the expectation in East-Azerbaijan and Tehran provinces. Moreover, these populations had an inbreeding coefficient (Fis) <0, indicating the excess of heterozygotes. This observation suggests that the populations of head lice from Iran are currently under active selective pressure. For the rest of the populations, H–W equilibrium and the expectations were significantly in harmony. The results of the current study highlight molecular techniques in the accurate detection of resistance genotypes before their establishment within the head louse population. Accurate detection of resistant genotypes seems to be helpful in decision-making on lice control programs and resistance monitoring and management.


Sign in / Sign up

Export Citation Format

Share Document