scholarly journals Withaferin A Alters Intermediate Filament Organization, Cell Shape and Behavior

PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39065 ◽  
Author(s):  
Boris Grin ◽  
Saleemulla Mahammad ◽  
Tatjana Wedig ◽  
Megan M. Cleland ◽  
Lester Tsai ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cécile Gaston ◽  
Simon De Beco ◽  
Bryant Doss ◽  
Meng Pan ◽  
Estelle Gauquelin ◽  
...  

AbstractAt the basis of cell shape and behavior, the organization of actomyosin and its ability to generate forces are widely studied. However, the precise regulation of this contractile network in space and time is unclear. Here, we study the role of the epithelial-specific protein EpCAM, a contractility modulator, in cell shape and motility. We show that EpCAM is required for stress fiber generation and front-rear polarity acquisition at the single cell level. In fact, EpCAM participates in the remodeling of a transient zone of active RhoA at the cortex of spreading epithelial cells. EpCAM and RhoA route together through the Rab35/EHD1 fast recycling pathway. This endosomal pathway spatially organizes GTP-RhoA to fine tune the activity of actomyosin resulting in polarized cell shape and development of intracellular stiffness and traction forces. Impairment of GTP-RhoA endosomal trafficking either by silencing EpCAM or by expressing Rab35/EHD1 mutants prevents proper myosin-II activity, stress fiber formation and ultimately cell polarization. Collectively, this work shows that the coupling between co-trafficking of EpCAM and RhoA, and actomyosin rearrangement is pivotal for cell spreading, and advances our understanding of how biochemical and mechanical properties promote cell plasticity.


2020 ◽  
Author(s):  
Gaston Cécile ◽  
De Beco Simon ◽  
Doss Bryant ◽  
Pan Meng ◽  
Gauquelin Estelle ◽  
...  

SummaryAt the basis of cell shape and behavior, actomyosin organization and force-generating property are widely studied, however very little is known about the regulation of the contractile network in space and time. Here we study the role of the epithelial-specific protein EpCAM, a contractility modulator, in cell shape and motility, and we show that it is required for the maturation of stress fibers and frontrear polarity acquisition at the single cell level. There, EpCAM ensures the remodeling of a transient active RhoA zone in the cortex of spreading epithelial cells. GTP-RhoA follows the endosomal pathway mediated by Rab35 and EHD1, where it co-evolves together with EpCAM. In fact, EpCAM balances GTP-RhoA turnover in order to tune actomyosin remodeling for cell shape, polarity and mechanical property acquisition. Impairment of GTP-RhoA endosomal trafficking either by EpCAM silencing or Rab35 / EHD1 mutant expression prevents correct myosin-II activity, stress fiber formation, and ultimately cell polarization. Collectively, this work shows that the coupling of EpCAM/RhoA co-trafficking to actomyosin rearrangement is critical for spreading, and advances our understanding of how biochemical and mechanical properties can be coupled for cell plasticity.


1998 ◽  
Vol 143 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Miri Yoon ◽  
Robert D. Moir ◽  
Veena Prahlad ◽  
Robert D. Goldman

The motile properties of intermediate filament (IF) networks have been studied in living cells expressing vimentin tagged with green fluorescent protein (GFP-vimentin). In interphase and mitotic cells, GFP-vimentin is incorporated into the endogenous IF network, and accurately reports the behavior of IF. Time-lapse observations of interphase arrays of vimentin fibrils demonstrate that they are constantly changing their configurations in the absence of alterations in cell shape. Intersecting points of vimentin fibrils, or foci, frequently move towards or away from each other, indicating that the fibrils can lengthen or shorten. Fluorescence recovery after photobleaching shows that bleach zones across fibrils rapidly recover their fluorescence. During this recovery, bleached zones frequently move, indicating translocation of fibrils. Intriguingly, neighboring fibrils within a cell can exhibit different rates and directions of movement, and they often appear to extend or elongate into the peripheral regions of the cytoplasm. In these same regions, short filamentous structures are also seen actively translocating. All of these motile properties require energy, and the majority appear to be mediated by interactions of IF with microtubules and microfilaments.


1992 ◽  
Vol 149 (2) ◽  
pp. 327-338 ◽  
Author(s):  
Christopher J. Drake ◽  
Lynn A. Davis ◽  
Jill E. Hungerford ◽  
Charles D. Little
Keyword(s):  

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Raphaël Etournay ◽  
Marko Popović ◽  
Matthias Merkel ◽  
Amitabha Nandi ◽  
Corinna Blasse ◽  
...  

How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape change on the basis of cell divisions, cell rearrangements and cell shape changes. We show that cells both generate and respond to epithelial stresses during this process, and that the nature of this interplay specifies the pattern of junctional network remodeling that changes wing shape. We show that patterned constraints exerted on the tissue by the extracellular matrix are key to force the tissue into the right shape. We present a continuum mechanical model that quantitatively describes the relationship between epithelial stresses and cell dynamics, and how their interplay reshapes the wing.


1996 ◽  
Vol 109 (9) ◽  
pp. 2319-2329 ◽  
Author(s):  
K. Straube-West ◽  
P.A. Loomis ◽  
P. Opal ◽  
R.D. Goldman

The properties regulating the supramolecular organization of neural intermediate filament (NIF) networks have been investigated in cultured dorsal root ganglion (DRG) neurons. The studies described take advantage of the ability of endogenous NIF to incorporate purified biotinylated neurofilament triplet (NFT) proteins, NF-L, NF-M and NF-H. When injected at concentrations of 0.8-1.0 mg/ml injection buffer, each of these proteins is incorporated without perturbing the endogenous NIF network. However, at progressively higher concentrations, NF-H induces the aggregation and accumulation of NIF in the cell body. Subsequent to the induction of these aggregates, numerous alterations in the cytoarchitecture of neurons can be detected. The latter occur in a temporal sequence which appears to begin with the fragmentation of the Golgi complex. At later times, accumulation of mitochondria within the proximal region of neurites, peripheralization of the nucleus, and a significant decrease in neurite caliber become obvious. After longer time periods, the NIF aggregates are seen to react with an antibody which reveals abnormally phosphorylated NF-H. These observations demonstrate that an imbalance in the normal stoichiometric relationships among the NFT proteins rapidly alters the supramolecular organization of the NIF network. These changes most likely reflect the normal functions of neurofilaments in cell shape and the organization and cytoplasmic distribution of membranous organelles. Interestingly, virtually all of these changes closely resemble those which have been reported in motor neuron diseases such as amyotrophic lateral sclerosis (ALS). These findings suggest that cultured neurons can be used as models for more precisely defining the relationships between the formation of NIF aggregates and the sequence of cytopathological events which typify neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document