scholarly journals Changes in cell shape and desmin intermediate filament distribution are associated with down-regulation of desmin expression in C2C12 myoblasts grown in the absence of extracellular Ca2+

2005 ◽  
Vol 38 (7) ◽  
pp. 1025-1032 ◽  
Author(s):  
C.S. Mermelstein ◽  
L.M. Amaral ◽  
M.I.L. Rebello ◽  
J.S.N. Reis ◽  
R. Borojevic ◽  
...  
2003 ◽  
Vol 185 (11) ◽  
pp. 3288-3296 ◽  
Author(s):  
Ivana Jankovic ◽  
Marco Ventura ◽  
Valerie Meylan ◽  
Martine Rouvet ◽  
Marina Elli ◽  
...  

ABSTRACT Aggregation-promoting factor (APF) was originally described as a protein involved in the conjugation and autoaggregation of Lactobacillus gasseri 4B2, whose corresponding apf gene was cloned and sequenced. In this report, we identified and sequenced an additional apf gene located in the region upstream of the previously published one. Inactivation of both apf genes was unsuccessful, indicating that APF function may be essential for the cell. Overproduction of APF proteins caused drastic alteration in the cell shape of this strain. These cells were irregular, twisted, enlarged, and tightly bound in unbreakable clumps of chains. Down-regulation of APF synthesis was achieved by cloning of the apf2 promoter region on a high-copy-number plasmid, which recruited a putative apf activator. As a consequence, the shape of the corresponding recombinant cells was elongated (filamentous) and cell division sites were no longer visible. None of the induced changes in APF production levels was clearly correlated with modifications of the aggregation phenotype. This report shows, for the first time, that APF proteins are mainly critical for L. gasseri 4B2 cell shape maintenance.


Endocrinology ◽  
2016 ◽  
Vol 157 (7) ◽  
pp. 2894-2908 ◽  
Author(s):  
Nan Li ◽  
Dolores D. Mruk ◽  
Elizabeth I. Tang ◽  
Will M. Lee ◽  
Chris K. C. Wong ◽  
...  

Formin 1 confers actin nucleation by generating long stretches of actin microfilaments to support cell movement, cell shape, and intracellular protein trafficking. Formin 1 is likely involved in microtubule (MT) dynamics due to the presence of a MT binding domain near its N terminus. Here, formin 1 was shown to structurally interact with α-tubulin, the building block of MT, and also end-binding protein 1 (a MT plus [+]-end-binding protein that stabilizes MT) in the testis. Knockdown of formin 1 in Sertoli cells with an established tight junction barrier was found to induce down-regulation of detyrosinated MT (a stabilized form of MT), and disorganization of MTs, in which MTs were retracted from the cell cortical zone, mediated through a loss of MT polymerization and down-regulation of Akt1/2 signaling kinase. An efficient knockdown of formin 1 in the testis reduced the number of track-like structures conferred by MTs and F-actin considerably, causing defects in spermatid and phagosome transport across the seminiferous epithelium. In summary, formin1 maintains MT and F-actin track-like structures to support spermatid and phagosome transport across the seminiferous epithelium during spermatogenesis.


2007 ◽  
Vol 177 (5) ◽  
pp. 795-807 ◽  
Author(s):  
Stefan Wöll ◽  
Reinhard Windoffer ◽  
Rudolf E. Leube

Plasticity of the resilient keratin intermediate filament cytoskeleton is an important prerequisite for epithelial tissue homeostasis. Here, the contribution of stress-activated p38 MAPK to keratin network organization was examined in cultured cells. It was observed that phosphorylated p38 colocalized with keratin granules that were rapidly formed in response to orthovanadate. The same p38p recruitment was noted during mitosis, in various stress situations and in cells producing mutant keratins. In all these situations keratin 8 became phosphorylated on S73, a well-known p38 target site. To demonstrate that p38-dependent keratin phosphorylation determines keratin organization, p38 activity was pharmacologically and genetically modulated: up-regulation induced keratin granule formation, whereas down-regulation prevented keratin filament network disassembly. Furthermore, transient p38 inhibition also inhibited keratin filament precursor formation and mutant keratin granule dissolution. Collectively, the rapid and reversible effects of p38 activity on keratin phosphorylation and organization in diverse physiological, stress, and pathological situations identify p38-dependent signalling as a major intermediate filament–regulating pathway.


1998 ◽  
Vol 143 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Miri Yoon ◽  
Robert D. Moir ◽  
Veena Prahlad ◽  
Robert D. Goldman

The motile properties of intermediate filament (IF) networks have been studied in living cells expressing vimentin tagged with green fluorescent protein (GFP-vimentin). In interphase and mitotic cells, GFP-vimentin is incorporated into the endogenous IF network, and accurately reports the behavior of IF. Time-lapse observations of interphase arrays of vimentin fibrils demonstrate that they are constantly changing their configurations in the absence of alterations in cell shape. Intersecting points of vimentin fibrils, or foci, frequently move towards or away from each other, indicating that the fibrils can lengthen or shorten. Fluorescence recovery after photobleaching shows that bleach zones across fibrils rapidly recover their fluorescence. During this recovery, bleached zones frequently move, indicating translocation of fibrils. Intriguingly, neighboring fibrils within a cell can exhibit different rates and directions of movement, and they often appear to extend or elongate into the peripheral regions of the cytoplasm. In these same regions, short filamentous structures are also seen actively translocating. All of these motile properties require energy, and the majority appear to be mediated by interactions of IF with microtubules and microfilaments.


2010 ◽  
Vol 285 (17) ◽  
pp. 12670-12683 ◽  
Author(s):  
Pascal Stuelsatz ◽  
Frédéric Pouzoulet ◽  
Yann Lamarre ◽  
Elise Dargelos ◽  
Sylvie Poussard ◽  
...  

1996 ◽  
Vol 109 (9) ◽  
pp. 2319-2329 ◽  
Author(s):  
K. Straube-West ◽  
P.A. Loomis ◽  
P. Opal ◽  
R.D. Goldman

The properties regulating the supramolecular organization of neural intermediate filament (NIF) networks have been investigated in cultured dorsal root ganglion (DRG) neurons. The studies described take advantage of the ability of endogenous NIF to incorporate purified biotinylated neurofilament triplet (NFT) proteins, NF-L, NF-M and NF-H. When injected at concentrations of 0.8-1.0 mg/ml injection buffer, each of these proteins is incorporated without perturbing the endogenous NIF network. However, at progressively higher concentrations, NF-H induces the aggregation and accumulation of NIF in the cell body. Subsequent to the induction of these aggregates, numerous alterations in the cytoarchitecture of neurons can be detected. The latter occur in a temporal sequence which appears to begin with the fragmentation of the Golgi complex. At later times, accumulation of mitochondria within the proximal region of neurites, peripheralization of the nucleus, and a significant decrease in neurite caliber become obvious. After longer time periods, the NIF aggregates are seen to react with an antibody which reveals abnormally phosphorylated NF-H. These observations demonstrate that an imbalance in the normal stoichiometric relationships among the NFT proteins rapidly alters the supramolecular organization of the NIF network. These changes most likely reflect the normal functions of neurofilaments in cell shape and the organization and cytoplasmic distribution of membranous organelles. Interestingly, virtually all of these changes closely resemble those which have been reported in motor neuron diseases such as amyotrophic lateral sclerosis (ALS). These findings suggest that cultured neurons can be used as models for more precisely defining the relationships between the formation of NIF aggregates and the sequence of cytopathological events which typify neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document