scholarly journals Genome-Wide Screening for Genes Associated with Valproic Acid Sensitivity in Fission Yeast

PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e68738 ◽  
Author(s):  
Lili Zhang ◽  
Ning Ma ◽  
Qingbin Liu ◽  
Yan Ma
Yeast ◽  
2015 ◽  
Vol 32 (10) ◽  
pp. 643-655 ◽  
Author(s):  
Huan Zhou ◽  
Qi Liu ◽  
Tianfang Shi ◽  
Yao Yu ◽  
Hong Lu

2014 ◽  
Vol 4 (7) ◽  
pp. 1297-1306 ◽  
Author(s):  
Jun Li ◽  
Yang Yu ◽  
Fang Suo ◽  
Ling-Ling Sun ◽  
Dan Zhao ◽  
...  

2005 ◽  
Vol 25 (2) ◽  
pp. 716-727 ◽  
Author(s):  
Fredrik Fagerström-Billai ◽  
Anthony P. H. Wright

ABSTRACT Gene duplication is considered an important evolutionary mechanism. Unlike many characterized species, the fission yeast Schizosaccharomyces pombe contains two paralogous genes, tup11 + and tup12 + , that encode transcriptional corepressors similar to the well-characterized budding yeast Tup1 protein. Previous reports have suggested that Tup11 and Tup12 proteins play redundant roles. Consistently, we show that the two Tup proteins can interact together when expressed at normal levels and that each can independently interact with the Ssn6 protein, as seen for Tup1 in budding yeast. However, tup11 − and tup12 − mutants have different phenotypes on media containing KCl and CaCl2. Consistent with the functional difference between tup11 − and tup12 − mutants, we identified a number of genes in genome-wide gene expression experiments that are differentially affected by mutations in the tup11 + and tup12 + genes. Many of these genes are differentially derepressed in tup11 − mutants and are over-represented in genes that have previously been shown to respond to a range of different stress conditions. Genes specifically derepressed in tup12 − mutants require the Ssn6 protein for their repression. As for Tup12, Ssn6 is also required for efficient adaptation to KCl- and CaCl2-mediated stress. We conclude that Tup11 and Tup12 are at least partly functionally diverged and suggest that the Tup12 and Ssn6 proteins have adopted a specific role in regulation of the stress response.


2017 ◽  
Vol 130 (12) ◽  
pp. 2049-2055 ◽  
Author(s):  
Louise Weston ◽  
Jessica Greenwood ◽  
Paul Nurse

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 870-870
Author(s):  
Nadja Blagitko-Dorfs ◽  
Pascal Schlosser ◽  
Rainer Claus ◽  
Tobias Ma ◽  
Katharina Götze ◽  
...  

Abstract Introduction: Treatment of acute myeloid leukemia (AML) in elderly patients remains challenging. Low-dose DNA hypomethylating agents are a therapeutic option in myelodysplastic syndromes and AML. However, the mechanism of action of hypomethylating agents and the role of induction of DNA hypomethylation in the clinical response is still unclear. To unravel the in vivoeffects of sequential cycles of decitabine, we set out to characterize methylomes of leukemic blasts, T cells (presumably not part of the malignant clone) and granulocytes before and during treatment of AML patients enrolled in the randomized phase II DECIDER clinical trial (NCT00867672). We developed a statistical model for longitudinal data analysis to identify the strongest hypomethylation response. Methods: Peripheral blood mononuclear cells (PBMC) from AML patients were collected before and during therapy (i.v. 20 mg/m2 decitabine for 5 days, with or without subsequent oral drug add-on). Leukemic blasts and T-cells were isolated using automatic magnetic sorting of cells (autoMACS) labelled with anti-human CD34, CD117 and CD3 MACS microbeads (Miltenyi Biotec), respectively. Granulocytes were isolated using dextran sedimentation. Cell type specific genome-wide DNA methylation profiles were obtained using Infinium Human Methylation 450 BeadChip arrays. Data were analyzed using R packages RnBeads applying beta mixture quantile dilation for normalization (Teschendorff et al. Bioinformatics, 29:189–196, 2013) and a modified version of NHMMfdr for multiple testing. Results: Peripheral blood blasts (median purity: 92%) were isolated from 20 patients, and T cells (median purity: 94%) from 26 patients before treatment and on days 4 and/or 8 and 15 of treatment cycle 1. From 10 patients, blasts and T cells were also collected during and/or after cycle 2. In total, until now 127 methylomes (46 blasts, 47 T cells, 34 granulocytes) were generated and used for mathematical modelling. Since the trial is still recruiting, genome-wide methylation was interpreted blinded to all clinical data including drug add-on (ATRA, valproic acid). First, the methylation dynamics of each individual CpG site described by a specified summary statistics were identified. Then, inter-probe distance and CpG annotation were incorporated to explain the dependence structure between CpG sites. In order to control the false discovery rate (FDR), we adapted a method proposed for differential DNA methylation (Kuan & Chiang, Biometrics 68: 774–783, 2012). The summary statistics for each CpG site were modelled to follow a non–homogeneous hidden Markov model. Statistical testing was validated by simulations revealing a very high discriminative power for affected CpGs even with very low methylation dynamics. Applying the model to blasts and T cells, extensive differences in the in vivomethylation changes became apparent. In blasts, 13% of CpG (59,920 CpGs of total 460,343 CpGs) showed significant DNA hypomethylation (Δβ>0.1, FDR<0.05) shared between patients by day 8, 75.8% of which (45,428 CpGs) were at least partially remethylated by day 15. Out of the 59,920 CpGs hypomethylated by day 8, 21.2% were located in promoters, 50.1% in gene bodies and 28.7% in intergenic regions. In contrast, in T cells only 2 CpGs out of 460,343 CpGs were significantly hypomethylated. This low number is partially due to the higher inter-individual variance as compared to leukemic blasts. Increases in DNA methylation across all patients were very rare, with only 38 CpGs consistently and significantly hypermethylated in blasts and none in T cells. Methylome analysis in granulocytes is currently ongoing. Conclusions: Our mathematical model revealed significant DNA hypomethylation by day 8, with striking remethylation by day 15 from start of decitabine treatment in AML blasts in vivo. Most of the hypomethylated CpGs resided in non-promoter regions. In contrast, T-cells were much less affected, which might be due to the low cell division rate and the fact that they are non-malignant cells. This model will hopefully allow determination whether the effects of decitabine are targeted or random, by including sequential samples from later treatment cycles. Unblinding of the patients' clinical data will reveal potential biomarkers of response to epigenetic therapy. Disclosures Lübbert: Ratiopharm: received study drug valproic acid, received study drug valproic acid Other; Johnson&Johnson: Honoraria, Membership on an entity's Board of Directors or advisory committees, received study drug decitabine Other.


2007 ◽  
Vol 26 (5) ◽  
pp. 1327-1339 ◽  
Author(s):  
Makoto Hayashi ◽  
Yuki Katou ◽  
Takehiko Itoh ◽  
Mitsutoshi Tazumi ◽  
Yoshiki Yamada ◽  
...  

2011 ◽  
Vol 286 (41) ◽  
pp. 35977-35988 ◽  
Author(s):  
Hadas Hezroni ◽  
Badi Sri Sailaja ◽  
Eran Meshorer

Embryonic stem cell (ESC) chromatin is characterized by a unique set of histone modifications, including enrichment for H3 lysine 9 acetylation (H3K9ac). Recent studies suggest that histone deacetylase (HDAC) inhibitors promote pluripotency. Here, using H3K9ac ChIP followed by high throughput sequencing analyses and gene expression in E14 mouse ESCs before and after treatment with a low level of the HDAC inhibitor valproic acid, we show that H3K9ac is enriched at gene promoters and is highly correlated with gene expression and with various genomic features, including different active histone marks and pluripotency-related transcription factors. Curiously, it predicts the cellular location of gene products. Treatment of ESCs with valproic acid leads to a pervasive genome-wide and time-dependent increase in H3K9ac, but this increase is selectively suppressed after 4 h in H3K4me3/H3K27me3 bivalent genes. H3K9ac increase is dependent on the promoter's chromatin state and is affected by the binding of P300, various transcription factors, and active histone marks. This study provides insights into the genomic response of ESCs to a low level of HDAC inhibitor, which leads to increased pluripotency. The results suggest that a mild (averaging less than 40%) but global change in the chromatin state is involved in increased pluripotency and that specific mechanisms operate selectively in bivalent genes to maintain constant H3K9ac levels. Our data support the notion that H3K9ac has an important role in ESC biology.


Sign in / Sign up

Export Citation Format

Share Document