In Vivo Methylome Changes in Purified Peripheral Blood Blasts and T Cells of AML Patients Treated with Decitabine: Statistical Modelling of a Hypomethylation Response

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 870-870
Author(s):  
Nadja Blagitko-Dorfs ◽  
Pascal Schlosser ◽  
Rainer Claus ◽  
Tobias Ma ◽  
Katharina Götze ◽  
...  

Abstract Introduction: Treatment of acute myeloid leukemia (AML) in elderly patients remains challenging. Low-dose DNA hypomethylating agents are a therapeutic option in myelodysplastic syndromes and AML. However, the mechanism of action of hypomethylating agents and the role of induction of DNA hypomethylation in the clinical response is still unclear. To unravel the in vivoeffects of sequential cycles of decitabine, we set out to characterize methylomes of leukemic blasts, T cells (presumably not part of the malignant clone) and granulocytes before and during treatment of AML patients enrolled in the randomized phase II DECIDER clinical trial (NCT00867672). We developed a statistical model for longitudinal data analysis to identify the strongest hypomethylation response. Methods: Peripheral blood mononuclear cells (PBMC) from AML patients were collected before and during therapy (i.v. 20 mg/m2 decitabine for 5 days, with or without subsequent oral drug add-on). Leukemic blasts and T-cells were isolated using automatic magnetic sorting of cells (autoMACS) labelled with anti-human CD34, CD117 and CD3 MACS microbeads (Miltenyi Biotec), respectively. Granulocytes were isolated using dextran sedimentation. Cell type specific genome-wide DNA methylation profiles were obtained using Infinium Human Methylation 450 BeadChip arrays. Data were analyzed using R packages RnBeads applying beta mixture quantile dilation for normalization (Teschendorff et al. Bioinformatics, 29:189–196, 2013) and a modified version of NHMMfdr for multiple testing. Results: Peripheral blood blasts (median purity: 92%) were isolated from 20 patients, and T cells (median purity: 94%) from 26 patients before treatment and on days 4 and/or 8 and 15 of treatment cycle 1. From 10 patients, blasts and T cells were also collected during and/or after cycle 2. In total, until now 127 methylomes (46 blasts, 47 T cells, 34 granulocytes) were generated and used for mathematical modelling. Since the trial is still recruiting, genome-wide methylation was interpreted blinded to all clinical data including drug add-on (ATRA, valproic acid). First, the methylation dynamics of each individual CpG site described by a specified summary statistics were identified. Then, inter-probe distance and CpG annotation were incorporated to explain the dependence structure between CpG sites. In order to control the false discovery rate (FDR), we adapted a method proposed for differential DNA methylation (Kuan & Chiang, Biometrics 68: 774–783, 2012). The summary statistics for each CpG site were modelled to follow a non–homogeneous hidden Markov model. Statistical testing was validated by simulations revealing a very high discriminative power for affected CpGs even with very low methylation dynamics. Applying the model to blasts and T cells, extensive differences in the in vivomethylation changes became apparent. In blasts, 13% of CpG (59,920 CpGs of total 460,343 CpGs) showed significant DNA hypomethylation (Δβ>0.1, FDR<0.05) shared between patients by day 8, 75.8% of which (45,428 CpGs) were at least partially remethylated by day 15. Out of the 59,920 CpGs hypomethylated by day 8, 21.2% were located in promoters, 50.1% in gene bodies and 28.7% in intergenic regions. In contrast, in T cells only 2 CpGs out of 460,343 CpGs were significantly hypomethylated. This low number is partially due to the higher inter-individual variance as compared to leukemic blasts. Increases in DNA methylation across all patients were very rare, with only 38 CpGs consistently and significantly hypermethylated in blasts and none in T cells. Methylome analysis in granulocytes is currently ongoing. Conclusions: Our mathematical model revealed significant DNA hypomethylation by day 8, with striking remethylation by day 15 from start of decitabine treatment in AML blasts in vivo. Most of the hypomethylated CpGs resided in non-promoter regions. In contrast, T-cells were much less affected, which might be due to the low cell division rate and the fact that they are non-malignant cells. This model will hopefully allow determination whether the effects of decitabine are targeted or random, by including sequential samples from later treatment cycles. Unblinding of the patients' clinical data will reveal potential biomarkers of response to epigenetic therapy. Disclosures Lübbert: Ratiopharm: received study drug valproic acid, received study drug valproic acid Other; Johnson&Johnson: Honoraria, Membership on an entity's Board of Directors or advisory committees, received study drug decitabine Other.

2013 ◽  
Vol 42 (5) ◽  
pp. 2893-2905 ◽  
Author(s):  
Chunjing Bian ◽  
Xiaochun Yu

Abstract Ten-eleven translocation (TET) family enzymes convert 5-methylcytosine to 5-hydroxylmethylcytosine. However, the molecular mechanism that regulates this biological process is not clear. Here, we show the evidence that PGC7 (also known as Dppa3 or Stella) interacts with TET2 and TET3 both in vitro and in vivo to suppress the enzymatic activity of TET2 and TET3. Moreover, lacking PGC7 induces the loss of DNA methylation at imprinting loci. Genome-wide analysis of PGC7 reveals a consensus DNA motif that is recognized by PGC7. The CpG islands surrounding the PGC7-binding motifs are hypermethylated. Taken together, our study demonstrates a molecular mechanism by which PGC7 protects DNA methylation from TET family enzyme-dependent oxidation.


1994 ◽  
Vol 53 (2) ◽  
pp. 122-127 ◽  
Author(s):  
P P Sfikakis ◽  
J Tesar ◽  
S Theocharis ◽  
G L Klipple ◽  
G C Tsokos

2021 ◽  
Vol 12 ◽  
Author(s):  
Maaria Palmroth ◽  
Krista Kuuliala ◽  
Ritva Peltomaa ◽  
Anniina Virtanen ◽  
Antti Kuuliala ◽  
...  

ObjectiveCurrent knowledge on the actions of tofacitinib on cytokine signaling pathways in rheumatoid arthritis (RA) is based on in vitro studies. Our study is the first to examine the effects of tofacitinib treatment on Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathways in vivo in patients with RA.MethodsSixteen patients with active RA, despite treatment with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), received tofacitinib 5 mg twice daily for three months. Levels of constitutive and cytokine-induced phosphorylated STATs in peripheral blood monocytes, T cells and B cells were measured by flow cytometry at baseline and three-month visits. mRNA expression of JAKs, STATs and suppressors of cytokine signaling (SOCS) were measured from peripheral blood mononuclear cells (PBMCs) by quantitative PCR. Association of baseline signaling profile with treatment response was also investigated.ResultsTofacitinib, in csDMARDs background, decreased median disease activity score (DAS28) from 4.4 to 2.6 (p &lt; 0.001). Tofacitinib treatment significantly decreased cytokine-induced phosphorylation of all JAK-STAT pathways studied. However, the magnitude of the inhibitory effect depended on the cytokine and cell type studied, varying from 10% to 73% inhibition following 3-month treatment with tofacitinib. In general, strongest inhibition by tofacitinib was observed with STAT phosphorylations induced by cytokines signaling through the common-γ-chain cytokine receptor in T cells, while lowest inhibition was demonstrated for IL-10 -induced STAT3 phosphorylation in monocytes. Constitutive STAT1, STAT3, STAT4 and STAT5 phosphorylation in monocytes and/or T cells was also downregulated by tofacitinib. Tofacitinib treatment downregulated the expression of several JAK-STAT pathway components in PBMCs, SOCSs showing the strongest downregulation. Baseline STAT phosphorylation levels in T cells and monocytes and SOCS3 expression in PBMCs correlated with treatment response.ConclusionsTofacitinib suppresses multiple JAK-STAT pathways in cytokine and cell population specific manner in RA patients in vivo. Besides directly inhibiting JAK activation, tofacitinib downregulates the expression of JAK-STAT pathway components. This may modulate the effects of tofacitinib on JAK-STAT pathway activation in vivo and explain some of the differential findings between the current study and previous in vitro studies. Finally, baseline immunological markers associate with the treatment response to tofacitinib.


2021 ◽  
Vol 118 (46) ◽  
pp. e2104721118
Author(s):  
Dominic Paquin-Proulx ◽  
Kerri G. Lal ◽  
Yuwadee Phuang-Ngern ◽  
Matthew Creegan ◽  
Andrey Tokarev ◽  
...  

Acute HIV-1 infection (AHI) results in the widespread depletion of CD4+ T cells in peripheral blood and gut mucosal tissue. However, the impact on the predominantly CD4+ immunoregulatory invariant natural killer T (iNKT) cells during AHI remains unknown. Here, iNKT cells from peripheral blood and colonic mucosa were investigated during treated and untreated AHI. iNKT cells in blood were activated and rapidly depleted in untreated AHI. At the time of peak HIV-1 viral load, these cells showed the elevated expression of cell death–associated transcripts compared to preinfection. Residual peripheral iNKT cells suffered a diminished responsiveness to in vitro stimulation early into chronic infection. Additionally, HIV-1 DNA, as well as spliced and unspliced viral RNA, were detected in iNKT cells isolated from blood, indicating the active infection of these cells in vivo. The loss of iNKT cells occurred from Fiebig stage III in the colonic mucosa, and these cells were not restored to normal levels after initiation of ART during AHI. CD4+ iNKT cells were depleted faster and more profoundly than conventional CD4+ T cells, and the preferential infection of CD4+ iNKT cells over conventional CD4+ T cells was confirmed by in vitro infection experiments. In vitro data also provided evidence of latent infection in iNKT cells. Strikingly, preinfection levels of peripheral blood CD4+ iNKT cells correlated directly with the peak HIV-1 load. These findings support a model in which iNKT cells are early targets for HIV-1 infection, driving their rapid loss from circulation and colonic mucosa.


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Zhongbin Xia ◽  
Fanru Meng ◽  
Ying Liu ◽  
Yuxuan Fang ◽  
Xia Wu ◽  
...  

Background: Rheumatoid arthritis (RA) is a inflammatory disease that characterized with the destruction of synovial joint, which could induce disability. Inflammatory response mediated the RA. It has been reported that MiR-128-3p is significantly increased in RA, while the potential role was still unclear. Methods: T cells in peripheral blood mononuclear cell (PBMC) were isolated from the peripheral blood from people of RA and normal person were used. Real-time PCR was performed to detect the expression of MiR-128-3p, while the protein expression of tumor necrosis factor-α-induced protein 3 (TNFAIP3) was determined using Western blot. The levels of IL-6 and IL-17 were measured using enzyme-linked immunosorbent assay (ELISA). The expression of CD69 and CD25 was detected using flow cytometry. The RA mouse model was constructed for verification of the role of MiR-128-3p. Results: The expression of MiR-128-3p was significantly increased, while TNFAIP3 was decreased, the levels of IL-6 and IL-17 were also increased in the T cells of RA patients. Down-regulated MiR-128-3p significantly suppressed the expression of p-IkBα and CD69, and CD25in T cells. MiR-128-3p targets TNFAIP3 to regulate its expression. MiR-128-3p knockdown significantly suppressed the activity of nuclear factor κB (NF-κB) and T cells by up-regulating TNFAIP3, while cells co-transfected with si-TNFAIP3 abolished the effects of MiR-128-3p knockdown. The in vivo experiments verified the potential role of MiR-128-3p on RA. Conclusion: Down-regulated MiR-128-3p significantly suppressed the inflammation response of RA through suppressing the activity of NF-κB pathway, which was mediated by TNFAIP3.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 214.1-214
Author(s):  
I. Arias de la Rosa ◽  
M. D. López Montilla ◽  
J. Rodríguez ◽  
E. Ballester ◽  
C. Torres-Granados ◽  
...  

Background:Cardiovascular risk factors are increased in Psoriatic Arthritis (PsA). In fact, around 60% out of PsA patients display insulin resistance (IR), a hallmark of metabolic syndrome, which might significantly contribute to the cardiovascular disease. Latest studies suggested that inflammatory and metabolic disorders may be under epigenetic control, including DNA methylation. DNA methylation is an unexplored area in the field of PsA.Objectives:To study the alterations in the genome-wide DNA methylation profile of CD4+T cells from PsA patients and its relationship with its pathology and the risk of cardiovascular comorbidity.Methods:Twenty healthy controls (HC) and 20 PsA patients were included in the study. PsA patients were classified into insulin resistant and non-insulin resistant according to HOMA-IR index. CD4+T lymphocytes were isolated from peripheral blood by positive immunomagnetic selection. The Illumina Infinium MethylationEPIC Beadchip was used to obtain DNA methylation profiles across approximately 850,000 CpGs (TSS1500, TSS200, 5UTR, 3UTR, first exon, gene body). Beta values (β) estimating methylation levels were obtained at each CpG site, and differentially methylated genes (DMG) between PsA and HC were identified. Functional classification of these genes was carried out through gene ontology analysis (PANTHER database). Gene expression analysis of the selected genes was also evaluated by RT-PCR. Vascular parameters including carotid intima-media thickness (cIMT) and endothelial function was analyzed by ecodoppler and periflux respectively.Results:The genome-wide methylation analysis identified 112 DMGs including 41 hypomethylated and 71 hypermethylated. These differentially methylated genes were enriched with several signaling pathways and disease categories including immune response, metabolic processes, oxidative stress, vascular and inflammatory pathways. The altered gene expression of selected genes with altered methylation levels in PsA was also validated. Correlation and association analysis of these DMGs with clinical and analytical variables, cardiovascular risk factors and endothelial microvascular function revealed that the degree of methylation of these genes was significantly associated with cIMT (IGF1R, NDRG3, SMYD3, HLA-DRB1, WDR70), arterial pressure (METT5D1, NRDG3, ADAM17, SMYD3, WNK1, CBX1), insulin resistance (AKAP13, SEMA6D, PLCB1), altered lipid profile and atherogenic index (MYBL1, METT5D1, MAN2A1, SLC1A7, SEMA6D, PLCB1, TLK1, SDK1, CBX1), inflammation (MYBL1, NDUFA5, METT5D1, SEMA6D, PLCB1, TLK1), and endothelial dysfunction (ADAMST10, GPCPD1, CCDC88A). In addition, this analysis also identified 435 DMGs including 280 hypomethylated and 155 hypermethylated in CD4+T cells from IR-PsA vs non IR-PsA patients. Between these two groups of PsA patients, CHUK, SERINC1, RUNX1, TTYH2, TXNDC11, FAF1, BICD1, SCD5, PDE5A, FAS, NFIA and GRP75 displayed the most significantly altered methylation, suggesting the role of these genes in the metabolic complications associated with PsA.Conclusion:These findings help our understanding of the pathogenesis of PsA and advance epigenetic studies in regards to this disease and the cardiometabolic comorbidities associated. Funded by ISCIII (PI17/01316 and RIER RD16/0012/0015) co-funded with FEDER.Disclosure of Interests:Iván Arias de la Rosa: None declared, María Dolores López Montilla Speakers bureau: Celgene, Javier Rodríguez: None declared, Esteban Ballester: None declared, Carmen Torres-Granados: None declared, Carlos Perez-Sanchez: None declared, Maria del Carmen Abalos-Aguilera: None declared, Gómez García Ignacio: None declared, Desiree Ruiz: None declared, Alejandra M. Patiño-Trives: None declared, María Luque-Tévar: None declared, Eduardo Collantes-Estévez Grant/research support from: ROCHE and Pfizer., Speakers bureau: ROCHE, Lilly, Bristol and Celgene., Chary Lopez-Pedrera Grant/research support from: ROCHE and Pfizer., Alejandro Escudero Contreras Grant/research support from: ROCHE and Pfizer, Speakers bureau: ROCHE, Lilly, Bristol and Celgene., Nuria Barbarroja Puerto Grant/research support from: ROCHE and Pfizer., Speakers bureau: ROCHE and Celgene.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3067-3076 ◽  
Author(s):  
Giovanna Cutrona ◽  
Nicolò Leanza ◽  
Massimo Ulivi ◽  
Giovanni Melioli ◽  
Vito L. Burgio ◽  
...  

Abstract This study shows that human postthymic T cells express CD10 when undergoing apoptosis, irrespective of the signal responsible for initiating the apoptotic process. Cells from continuous T-cell lines did not normally express CD10, but became CD10+ when induced into apoptosis by human immunodeficiency virus (HIV) infection and exposure to CD95 monoclonal antibody, etoposide, or staurosporin. Inhibitors of caspases blocked apoptosis and CD10 expression. Both CD4+ and CD8+ T cells purified from normal peripheral blood expressed CD10 on apoptotic induction. CD10 was newly synthesized by the apoptosing cells because its expression was inhibited by exposure to cycloheximide and CD10 mRNA became detectable by reverse transcription-polymerase chain reaction in T cells cultured under conditions favoring apoptosis. To show CD10 on T cells apoptosing in vivo, lymph node and peripheral blood T cells from HIV+ subjects were used. These suspensions were composed of a substantial, although variable, proportion of apoptosing T cells that consistently expressed CD10. In contrast, CD10+ as well as spontaneously apoptosing T cells were virtually absent in peripheral blood from normal individuals. Collectively, these observations indicate that CD10 may represent a reliable marker for identifying and isolating apoptosing T cells in vitro and ex vivo and possibly suggest novel functions for surface CD10 in the apoptotic process of lymphoid cells.


2015 ◽  
Vol 112 (13) ◽  
pp. 4080-4085 ◽  
Author(s):  
Lauren P. Schewitz-Bowers ◽  
Philippa J. P. Lait ◽  
David A. Copland ◽  
Ping Chen ◽  
Wenting Wu ◽  
...  

Glucocorticoids remain the cornerstone of treatment for inflammatory conditions, but their utility is limited by a plethora of side effects. One of the key goals of immunotherapy across medical disciplines is to minimize patients’ glucocorticoid use. Increasing evidence suggests that variations in the adaptive immune response play a critical role in defining the dose of glucocorticoids required to control an individual’s disease, and Th17 cells are strong candidate drivers for nonresponsiveness [also called steroid resistance (SR)]. Here we use gene-expression profiling to further characterize the SR phenotype in T cells and show that Th17 cells generated from both SR and steroid-sensitive individuals exhibit restricted genome-wide responses to glucocorticoids in vitro, and that this is independent of glucocorticoid receptor translocation or isoform expression. In addition, we demonstrate, both in transgenic murine T cells in vitro and in an in vivo murine model of autoimmunity, that Th17 cells are reciprocally sensitive to suppression with the calcineurin inhibitor, cyclosporine A. This result was replicated in human Th17 cells in vitro, which were found to have a conversely large genome-wide shift in response to cyclosporine A. These observations suggest that the clinical efficacy of cyclosporine A in the treatment of SR diseases may be because of its selective attenuation of Th17 cells, and also that novel therapeutics, which target either Th17 cells themselves or the effector memory T-helper cell population from which they are derived, would be strong candidates for drug development in the context of SR inflammation.


Sign in / Sign up

Export Citation Format

Share Document