scholarly journals Variation in One Residue Associated with the Metal Ion-Dependent Adhesion Site Regulates αIIbβ3 Integrin Ligand Binding Affinity

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76793 ◽  
Author(s):  
Joel Raborn ◽  
Ting Fu ◽  
Xue Wu ◽  
Zhilong Xiu ◽  
Guohui Li ◽  
...  
Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3617-3617
Author(s):  
Dragana Nesic ◽  
Yixiao Zhang ◽  
Aleksandar Spasic ◽  
Jihong Li ◽  
Davide Provasi ◽  
...  

DN, YZ, AS, & JL contributed equally, as did MF, TW, & BSC The αIIbβ3 antagonist antiplatelet drug abciximab, approved in 1994, is the chimeric antigen-binding fragment (Fab) comprising the variable regions of murine mAb 7E3 and human IgG1 and light chain κ constant domains. In studies involving thousands of patients undergoing percutaneous coronary interventions, abciximab decreased mortality and the risk of recurrent myocardial infarction. Mutagenesis studies conducted by us and others (Puzon-McLaughlin, JBC 2000; Takagi, Biochem 2002; Artoni, PNAS 2004) suggested that abciximab binds to the β3 C177-C184 specificity-determining loop (SDL) and Trp129 on the adjacent β1-α1 helix, and our negative-stain electron microscopy (EM) studies of the complex of mAb 7E3 with αIIbβ3 in nanodiscs (Choi, Blood 2013) supported its binding to the αIIbβ3 head domain. None of these studies, however, had the resolution to assess whether 7E3 or abciximab prevents fibrinogen binding by steric interference, disruption of the αIIbβ3-binding pocket for fibrinogen, or both. To address this knowledge gap, we used cryo-EM to produce a density map at 2.8-Å resolution, which allowed us to build an atomic model of the αIIbβ3-abciximab complex. The interacting surface of abciximab is comprised of residues from all three complementarity determining regions of both the light and heavy chains, with high representation of aromatic residues (Figure). Abciximab buries a total of 1,273 Å2 of solvent-exposed surface on αIIbβ3, of which 1,040 Å2 is with β3 and 218 Å2 is with αIIb. The binding of abciximab does not result in disruption of the ADMIDAS, MIDAS, or SyMBS metal ion regions, but it does produce an ~3.4 Å compression of the SDL. Binding is primarily to the β3 SDL and neighboring residues, the β1-α1 helix, and β3 Ser211-Val212 and Met335. The latter residue interacts with the ADMIDAS metal ion in the unliganded receptor; ligand binding leads to the loss of the interaction and a dramatic swing-out motion of the β3 subunit that produces a high-affinity ligand-binding conformation. Surprisingly, the structure also indicated several abciximab interactions with αIIb. To assess the contribution of individual interactions between αIIbβ3 integrin and abciximab to the stability of the αIIbβ3-abciximab complex, we carried out 4 independent molecular dynamics simulations of the cryo-EM structure as well as the X-ray crystal structure of ligand-free αIIbβ3 integrin in its closed conformation (PDB: 3FCS). These revealed that the dynamic behavior of the RGD peptide-binding pocket was similar between the cryo-EM structure of the αIIbβ3-abciximab complex and the X-ray structure of unbound αIIbβ3 during the total simulation time of 2 microseconds per system. Abciximab-protein interaction analysis of the simulations demonstrated that: 1. The αIIb subunit participated marginally in the interaction with abciximab, with only the Asp159(αIIb)-Arg7(light chain) making contact for >0.5 fraction of the simulation time. 2. The β3 residues with >0.7 contact fraction values were Lys125, Asp126, Trp129, and Gln132 on the β1-α1 helix; Glu171, Asn175, Tyr178, Lys181, Thr182, and Thr183 on the SDL; and Val212, Met335, and Asp336. We calculated the effect of every possible mutation at each residue involved in significant inter-molecular interaction with abciximab in terms of changes in free energy of binding, and the resulting relative values were compared to experimental mutagenesis data. Thus, we made αIIb Asp159Ala and β3 Met335Asp mutations, the latter producing the analogous murine residue and the mutation predicted to be most disruptive to abciximab binding. We found no effect of either mutation on the binding of either mAb 7E3 or abciximab as judged by flow cytometry. Our data demonstrate unexpected interactions of abciximab with several αIIb residues and β3 Met335. Most importantly, abciximab binding did not alter the atomic structure or dynamics of the RGD-binding pocket in the timescale of the simulation, and so unless it induces allosteric modulation over a longer time scale, it does not appear to disrupt the RGD-binding pocket. Abciximab did, however, compress the SDL, which is not a component of the RGD-binding pocket but contributes to ligand binding by a still undefined mechanism. Thus, our data are most consistent with abciximab preventing ligand binding by steric interference, with a potential contribution via alteration of the SDL. Figure Disclosures Coller: Centocor/Janssen: Patents & Royalties: abxicimab; Accumetrics/Instrumentation Laboratory: Patents & Royalties: VerifyNow assay; Scholar Rock: Consultancy, Equity Ownership; CeleCor: Consultancy, Equity Ownership, Research Funding.


2013 ◽  
Vol 201 (7) ◽  
pp. 1053-1068 ◽  
Author(s):  
Jieqing Zhu ◽  
Jianghai Zhu ◽  
Timothy A. Springer

Carefully soaking crystals with Arg-Gly-Asp (RGD) peptides, we captured eight distinct RGD-bound conformations of the αIIbβ3 integrin headpiece. Starting from the closed βI domain conformation, we saw six intermediate βI conformations and finally the fully open βI with the hybrid domain swung out in the crystal lattice. The β1-α1 backbone that hydrogen bonds to the Asp side chain of RGD was the first element to move followed by adjacent to metal ion-dependent adhesion site Ca2+, α1 helix, α1’ helix, β6-α7 loop, α7 helix, and hybrid domain. We define in atomic detail how conformational change was transmitted over long distances in integrins, 40 Å from the ligand binding site to the opposite end of the βI domain and 80 Å to the far end of the hybrid domain. During these movements, RGD slid in its binding groove toward αIIb, and its Arg side chain became ordered. RGD concentration requirements in soaking suggested a >200-fold higher affinity after opening. The thermodynamic cycle shows how higher affinity pays the energetic cost of opening.


2012 ◽  
Vol 196 (1) ◽  
pp. 131-146 ◽  
Author(s):  
Yamei Yu ◽  
Jianghai Zhu ◽  
Li-Zhi Mi ◽  
Thomas Walz ◽  
Hao Sun ◽  
...  

The lymphocyte homing receptor integrin α4β7 is unusual for its ability to mediate both rolling and firm adhesion. α4β1 and α4β7 are targeted by therapeutics approved for multiple sclerosis and Crohn’s disease. Here, we show by electron microscopy and crystallography how two therapeutic Fabs, a small molecule (RO0505376), and mucosal adhesion molecule-1 (MAdCAM-1) bind α4β7. A long binding groove at the α4–β7 interface for immunoglobulin superfamily domains differs in shape from integrin pockets that bind Arg-Gly-Asp motifs. RO0505376 mimics an Ile/Leu-Asp motif in α4 ligands, and orients differently from Arg-Gly-Asp mimics. A novel auxiliary residue at the metal ion–dependent adhesion site in α4β7 is essential for binding to MAdCAM-1 in Mg2+ yet swings away when RO0505376 binds. A novel intermediate conformation of the α4β7 headpiece binds MAdCAM-1 and supports rolling adhesion. Lack of induction of the open headpiece conformation by ligand binding enables rolling adhesion to persist until integrin activation is signaled.


2021 ◽  
Vol 7 (19) ◽  
pp. eabe9716
Author(s):  
Stephanie Schumacher ◽  
Dirk Dedden ◽  
Roberto Vazquez Nunez ◽  
Kyoko Matoba ◽  
Junichi Takagi ◽  
...  

Integrin α5β1 is a major fibronectin receptor critical for cell migration. Upon complex formation, fibronectin and α5β1 undergo conformational changes. While this is key for cell-tissue connections, its mechanism is unknown. Here, we report cryo–electron microscopy structures of native human α5β1 with fibronectin to 3.1-angstrom resolution, and in its resting state to 4.6-angstrom resolution. The α5β1-fibronectin complex revealed simultaneous interactions at the arginine-glycine-aspartate loop, the synergy site, and a newly identified binding site proximal to adjacent to metal ion–dependent adhesion site, inducing the translocation of helix α1 to secure integrin opening. Resting α5β1 adopts an incompletely bent conformation, challenging the model of integrin sharp bending inhibiting ligand binding. Our biochemical and structural analyses showed that affinity of α5β1 for fibronectin is increased with manganese ions (Mn2+) while adopting the half-bent conformation, indicating that ligand-binding affinity does not depend on conformation, and α5β1 opening is induced by ligand-binding.


2020 ◽  
Author(s):  
E. Prabhu Raman ◽  
Thomas J. Paul ◽  
Ryan L. Hayes ◽  
Charles L. Brooks III

<p>Accurate predictions of changes to protein-ligand binding affinity in response to chemical modifications are of utility in small molecule lead optimization. Relative free energy perturbation (FEP) approaches are one of the most widely utilized for this goal, but involve significant computational cost, thus limiting their application to small sets of compounds. Lambda dynamics, also rigorously based on the principles of statistical mechanics, provides a more efficient alternative. In this paper, we describe the development of a workflow to setup, execute, and analyze Multi-Site Lambda Dynamics (MSLD) calculations run on GPUs with CHARMm implemented in BIOVIA Discovery Studio and Pipeline Pilot. The workflow establishes a framework for setting up simulation systems for exploratory screening of modifications to a lead compound, enabling the calculation of relative binding affinities of combinatorial libraries. To validate the workflow, a diverse dataset of congeneric ligands for seven proteins with experimental binding affinity data is examined. A protocol to automatically tailor fit biasing potentials iteratively to flatten the free energy landscape of any MSLD system is developed that enhances sampling and allows for efficient estimation of free energy differences. The protocol is first validated on a large number of ligand subsets that model diverse substituents, which shows accurate and reliable performance. The scalability of the workflow is also tested to screen more than a hundred ligands modeled in a single system, which also resulted in accurate predictions. With a cumulative sampling time of 150ns or less, the method results in average unsigned errors of under 1 kcal/mol in most cases for both small and large combinatorial libraries. For the multi-site systems examined, the method is estimated to be more than an order of magnitude more efficient than contemporary FEP applications. The results thus demonstrate the utility of the presented MSLD workflow to efficiently screen combinatorial libraries and explore chemical space around a lead compound, and thus are of utility in lead optimization.</p>


Author(s):  
Hari Balaji ◽  
Selvaraj Ayyamperuma ◽  
Niladri Saha ◽  
Shyam Sundar Pottabathula ◽  
Jubie Selvaraj ◽  
...  

: Vitamin-D deficiency is a global concern. Gene mutations in the vitamin D receptor’s (VDR) ligand binding domain (LBD) variously alter the ligand binding affinity, heterodimerization with retinoid X receptor (RXR) and inhibit coactivator interactions. These LBD mutations may result in partial or total hormone unresponsiveness. A plethora of evidence report that selective long chain polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) bind to the ligand-binding domain of VDR and lead to transcriptional activation. We therefore hypothesize that selective PUFAs would modulate the dynamics and kinetics of VDRs, irrespective bioactive of vitamin-D binding. The spatial arrangements of the selected PUFAs in VDR active site were examined by in-silico docking studies. The docking results revealed that PUFAs have fatty acid structure-specific binding affinity towards VDR. The calculated EPA, DHA & AA binding energies (Cdocker energy) were lesser compared to vitamin-D in wild type of VDR (PDB id: 2ZLC). Of note, the DHA has higher binding interactions to the mutated VDR (PDB id: 3VT7) when compared to the standard Vitamin-D. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding of DHA with mutated VDR complex. These findings suggest the unique roles of PUFAs in VDR activation and may offer alternate strategy to circumvent vitamin-D deficiency.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Surendra Kumar ◽  
Mi-hyun Kim

AbstractIn drug discovery, rapid and accurate prediction of protein–ligand binding affinities is a pivotal task for lead optimization with acceptable on-target potency as well as pharmacological efficacy. Furthermore, researchers hope for a high correlation between docking score and pose with key interactive residues, although scoring functions as free energy surrogates of protein–ligand complexes have failed to provide collinearity. Recently, various machine learning or deep learning methods have been proposed to overcome the drawbacks of scoring functions. Despite being highly accurate, their featurization process is complex and the meaning of the embedded features cannot directly be interpreted by human recognition without an additional feature analysis. Here, we propose SMPLIP-Score (Substructural Molecular and Protein–Ligand Interaction Pattern Score), a direct interpretable predictor of absolute binding affinity. Our simple featurization embeds the interaction fingerprint pattern on the ligand-binding site environment and molecular fragments of ligands into an input vectorized matrix for learning layers (random forest or deep neural network). Despite their less complex features than other state-of-the-art models, SMPLIP-Score achieved comparable performance, a Pearson’s correlation coefficient up to 0.80, and a root mean square error up to 1.18 in pK units with several benchmark datasets (PDBbind v.2015, Astex Diverse Set, CSAR NRC HiQ, FEP, PDBbind NMR, and CASF-2016). For this model, generality, predictive power, ranking power, and robustness were examined using direct interpretation of feature matrices for specific targets.


Sign in / Sign up

Export Citation Format

Share Document