scholarly journals Assessing the Effect of Litter Species on the Dynamic of Bacterial and Fungal Communities during Leaf Decomposition in Microcosm by Molecular Techniques

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e84613 ◽  
Author(s):  
Wenjing Xu ◽  
Lingling Shi ◽  
Onchim Chan ◽  
Jiao Li ◽  
Peter Casper ◽  
...  
2010 ◽  
Vol 165 (5) ◽  
pp. 351-362 ◽  
Author(s):  
Sofia Duarte ◽  
Cláudia Pascoal ◽  
Artur Alves ◽  
António Correia ◽  
Fernanda Cássio

2006 ◽  
Vol 58 (3-4) ◽  
pp. 133-141 ◽  
Author(s):  
Astrid Michaelsen ◽  
Flavia Pinzari ◽  
Katrin Ripka ◽  
Werner Lubitz ◽  
Guadalupe Piñar

Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 361
Author(s):  
Clara P. Peña-Venegas ◽  
Armando Sterling ◽  
Tatiana K. Andrade-Ramírez

Rubber (Hevea brasiliensis, (Willd. Ex Adr. de Juss) Muell. Arg, Euphorbiaceae) is an important commercial latex-producing plant. Commercially, rubber is reproduced from a limited number of grifting genotypes. New promising genotypes have been selected to replace traditional genotypes. In addition, rubber has been promoted to recuperate Amazon soils degraded by extensive cattle ranching. Arbuscular mycorrhizal (AM) symbiosis is an important alternative for improving plant nutrition in rubber trees and recuperating degraded soils, but AM fungal communities on different plantations and in rubber genotypes are unknown. Spore abundance, root colonization and AM fungal community composition were evaluated in rubber roots of Colombian and introduced genotypes cultivated in degraded soils with different plantation types. Traditional (spore isolation and description; clearing and staining roots) and molecular techniques (Illumina sequencing) were used to assess AM fungi. Rubber roots hosted a diverse AM fungal community of 135 virtual taxa (VT) in 13 genera. The genus Glomus represented 66% of the total AM fungal community. Rubber genotype did not affect the arbuscular mycorrhization, hosting similar AM fungal communities. The composition of the AM fungal community on old and young rubber plantations was different. Diversity in AM fungi in rubber roots is an important characteristic for restoring degraded soils.


2007 ◽  
Vol 73 (18) ◽  
pp. 5817-5824 ◽  
Author(s):  
Lee Cosgrove ◽  
Paula L. McGeechan ◽  
Geoff D. Robson ◽  
Pauline S. Handley

ABSTRACT Soil fungal communities involved in the biodegradation of polyester polyurethane (PU) were investigated. PU coupons were buried in two sandy loam soils with different levels of organic carbon: one was acidic (pH 5.5), and the other was more neutral (pH 6.7). After 5 months of burial, the fungal communities on the surface of the PU were compared with the native soil communities using culture-based and molecular techniques. Putative PU-degrading fungi were common in both soils, as <45% of the fungal colonies cleared the colloidal PU dispersion Impranil on solid medium. Denaturing gradient gel electrophoresis showed that fungal communities on the PU were less diverse than in the soil, and only a few species in the PU communities were detectable in the soil, indicating that only a small subset of the soil fungal communities colonized the PU. Soil type influenced the composition of the PU fungal communities. Geomyces pannorum and a Phoma sp. were the dominant species recovered by culturing from the PU buried in the acidic and neutral soils, respectively. Both fungi degraded Impranil and represented >80% of cultivable colonies from each plastic. However, PU was highly susceptible to degradation in both soils, losing up to 95% of its tensile strength. Therefore, different fungi are associated with PU degradation in different soils but the physical process is independent of soil type.


Author(s):  
D. L. Taylor

Cells function through the complex temporal and spatial interplay of ions, metabolites, macromolecules and macromolecular assemblies. Biochemical approaches allow the investigator to define the components and the solution chemical reactions that might be involved in cellular functions. Static structural methods can yield information concerning the 2- and 3-D organization of known and unknown cellular constituents. Genetic and molecular techniques are powerful approaches that can alter specific functions through the manipulation of gene products and thus identify necessary components and sequences of molecular events. However, full knowledge of the mechanism of particular cell functions will require direct measurement of the interplay of cellular constituents. Therefore, there has been a need to develop methods that can yield chemical and molecular information in time and space in living cells, while allowing the integration of information from biochemical, molecular and genetic approaches at the cellular level.


1996 ◽  
Vol 75 (06) ◽  
pp. 959-964 ◽  
Author(s):  
I M Nesbitt ◽  
A C Goodeve ◽  
A M Guilliatt ◽  
M Makris ◽  
F E Preston ◽  
...  

Summaryvon Willebrand factor (vWF) is a multimeric glycoprotein found in plasma non covalently linked to factor VIII (FVIII). Type 2N von Willebrand disease (vWD) is caused by a mutation in the vWF gene that results in vWF with a normal multimeric pattern, but with reduced binding to FVIII.We have utilised methods for the phenotypic and genotypic detection of type 2N vWD. The binding of FVIII to vWF in 69 patients, 36 with type 1 vWD, 32 with mild haemophilia A and one possible haemophilia A carrier with low FVIII levels was studied. Of these, six were found to have reduced binding (five type 1 vWD, one possible haemophilia A carrier), DNA was extracted from these patients and exons 18-23 of the vWF gene encoding the FVIII binding region of vWF were analysed. After direct sequencing and chemical cleavage mismatch detection, a Thr28Met mutation was detected in two unrelated individuals, one of whom appears to be a compound heterozygote for the mutation and a null allele. No mutations were found in the region of the vWF gene encoding the FVIII binding region of vWF in the other four patients


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2017 ◽  
Vol 43 (2) ◽  
pp. 286 ◽  
Author(s):  
Dan-Mei CHEN ◽  
Ling YUAN ◽  
Jian-Guo HUANG ◽  
Jian-Hua JI ◽  
Hong-Qian HOU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document