scholarly journals Cucurbitacin B Induced ATM-Mediated DNA Damage Causes G2/M Cell Cycle Arrest in a ROS-Dependent Manner

PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88140 ◽  
Author(s):  
Jiajie Guo ◽  
Guosheng Wu ◽  
Jiaolin Bao ◽  
Wenhui Hao ◽  
Jinjian Lu ◽  
...  
2020 ◽  
Vol 20 (6) ◽  
pp. 734-750
Author(s):  
Wallax A.S. Ferreira ◽  
Rommel R. Burbano ◽  
Claudia do Ó. Pessoa ◽  
Maria L. Harada ◽  
Bárbara do Nascimento Borges ◽  
...  

Background: Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. Objective: This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. Methods: The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). Results: Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. Conclusions: It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.


2015 ◽  
Vol 36 (9) ◽  
pp. 1113-1125 ◽  
Author(s):  
Qing-qing Zhang ◽  
Wen-juan Wang ◽  
Jun Li ◽  
Neng Yang ◽  
Gang Chen ◽  
...  

2021 ◽  
Author(s):  
Héloïse Coutelier ◽  
Oana Ilioaia ◽  
Jeanne Le Peillet ◽  
Marion Hamon ◽  
Damien D'Amours ◽  
...  

Telomere dysfunction activates the DNA damage checkpoint to induce a cell cycle arrest. After an extended period of time, however, cells can bypass the arrest and undergo cell division despite the persistence of the initial damage, a process called adaptation to DNA damage. The Polo kinase Cdc5 in Saccharomyces cerevisiae is essential for adaptation and for many other cell-cycle processes. How the regulation of Cdc5 in response to telomere dysfunction relates to adaptation is not clear. Here, we report that Cdc5 protein level decreases after telomere dysfunction in a Mec1-, Rad53- and Ndd1-dependent manner. This regulation of Cdc5 is important to maintain long-term cell cycle arrest but not for the initial checkpoint arrest. We find that both Cdc5 and the adaptation-deficient mutant protein Cdc5-ad are heavily phosphorylated and several phosphorylation sites modulate adaptation efficiency. The PP2A phosphatases are involved in Cdc5-ad phosphorylation status and contribute to adaptation mechanisms. We finally propose that Cdc5 orchestrates multiple cell cycle pathways to promote adaptation.


2007 ◽  
Vol 85 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Enyu Liu ◽  
Jing Wu ◽  
Weidong Cao ◽  
Jianning Zhang ◽  
Weiping Liu ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 513 ◽  
Author(s):  
Andrea Maria Guarino ◽  
Annaelena Troiano ◽  
Elio Pizzo ◽  
Andrea Bosso ◽  
Maria Vivo ◽  
...  

The prototype cold-shock Y-box binding protein 1 (YB-1) is a multifunctional protein that regulates a variety of fundamental biological processes including cell proliferation and migration, DNA damage, matrix protein synthesis and chemotaxis. The plethora of functions assigned to YB-1 is strictly dependent on its subcellular localization. In resting cells, YB-1 localizes to cytoplasm where it is a component of messenger ribonucleoprotein particles. Under stress conditions, YB-1 contributes to the formation of stress granules (SGs), cytoplasmic foci where untranslated messenger RNAs (mRNAs) are sorted or processed for reinitiation, degradation, or packaging into ribonucleoprotein particles (mRNPs). Following DNA damage, YB-1 translocates to the nucleus and participates in DNA repair thereby enhancing cell survival. Recent data show that YB-1 can also be secreted and YB-1-derived polypeptides are found in plasma of patients with sepsis and malignancies. Here we show that in response to oxidative insults, YB-1 assembly in SGs is associated with an enhancement of YB-1 protein secretion. An enriched fraction of extracellular YB-1 (exYB-1) significantly inhibited proliferation of receiving cells and such inhibition was associated to a G2/M cell cycle arrest, induction of p21WAF and reduction of Np63 protein level. All together, these data show that acute oxidative stress causes sustained release of YB-1 as a paracrine/autocrine signal that stimulate cell cycle arrest.


Oncogene ◽  
2002 ◽  
Vol 21 (23) ◽  
pp. 3796-3803 ◽  
Author(s):  
Stefania Vossio ◽  
Emanuele Palescandolo ◽  
Natalia Pediconi ◽  
Francesca Moretti ◽  
Clara Balsano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document