scholarly journals Pretreatment of Epithelial Cells with Live Streptococcus pneumoniae Has No Detectable Effect on Influenza A Virus Replication In Vitro

PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e90066 ◽  
Author(s):  
Kang Ouyang ◽  
Shireen A. Woodiga ◽  
Varun Dwivedi ◽  
Carolyn M. Buckwalter ◽  
Anirudh K. Singh ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 509 ◽  
Author(s):  
Meenakshi Tiwary ◽  
Robert J. Rooney ◽  
Swantje Liedmann ◽  
Kim S. LeMessurier ◽  
Amali E. Samarasinghe

Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.


2016 ◽  
Vol 8 (17) ◽  
pp. 2017-2031 ◽  
Author(s):  
Simona Panella ◽  
Maria Elena Marcocci ◽  
Ignacio Celestino ◽  
Sergio Valente ◽  
Clemens Zwergel ◽  
...  

2019 ◽  
Vol 61 (3) ◽  
pp. 395-398
Author(s):  
Christin Peteranderl ◽  
Irina Kuznetsova ◽  
Jessica Schulze ◽  
Martin Hardt ◽  
Emilia Lecuona ◽  
...  

2014 ◽  
Vol 82 (11) ◽  
pp. 4607-4619 ◽  
Author(s):  
Melinda M. Pettigrew ◽  
Laura R. Marks ◽  
Yong Kong ◽  
Janneane F. Gent ◽  
Hazeline Roche-Hakansson ◽  
...  

ABSTRACTStreptococcus pneumoniaeis a leading cause of infectious disease globally. Nasopharyngeal colonization occurs in biofilms and precedes infection. Prior studies have indicated that biofilm-derived pneumococci are avirulent. However, influenza A virus (IAV) infection releases virulent pneumococci from biofilmsin vitroandin vivo. Triggers of dispersal include IAV-induced changes in the nasopharynx, such as increased temperature (fever) and extracellular ATP (tissue damage). We used whole-transcriptome shotgun sequencing (RNA-seq) to compare theS. pneumoniaetranscriptome in biofilms, bacteria dispersed from biofilms after exposure to IAV, febrile-range temperature, or ATP, and planktonic cells grown at 37°C. Compared with biofilm bacteria, actively dispersedS. pneumoniae, which were more virulent in invasive disease, upregulated genes involved in carbohydrate metabolism. Enzymatic assays for ATP and lactate production confirmed that dispersed pneumococci exhibited increased metabolism compared to those in biofilms. Dispersed pneumococci also upregulated genes associated with production of bacteriocins and downregulated colonization-associated genes related to competence, fratricide, and the transparent colony phenotype. IAV had the largest impact on the pneumococcal transcriptome. Similar transcriptional differences were also observed when actively dispersed bacteria were compared with avirulent planktonic bacteria. Our data demonstrate complex changes in the pneumococcal transcriptome in response to IAV-induced changes in the environment. Our data suggest that disease is caused by pneumococci that are primed to move to tissue sites with altered nutrient availability and to protect themselves from the nasopharyngeal microflora and host immune response. These data help explain pneumococcal virulence after IAV infection and have important implications for studies ofS. pneumoniaepathogenesis.


2021 ◽  
Author(s):  
Diana Schwendener Forkel

In the last twenty years, mathematical modelling (MM) has been notably used to capture the infection kinetics of many infectious diseases as it allows insights into the basic biology, infection kinetics, and the mechanisms and efficacy of treatment modalities. MMs of influenza A virus (IAV) infection usually represent the process of virus replication within a cell as a ‘black box’ term for viral production. The simplification is appropriate when we are not interested in the microscopic details of infection. Recently though, MMs have begun to account for the kinetics of intracellular IAV replication. Herein, we examine the MM by Heldt et al., which is able to capture kinetics of IAV infection. It however, does so by adjusting parameters of the MM to various events in the infection process. We developed a robust, yet concise, MM for the intracellular kinetics of influenza A virus infection in vitro with a consistent set of parameters. We use attachment, fusion and RNA data gathered from literature sources to validate our simplified MM and match known infection kinetics consistent throughout infection.


Virology ◽  
2019 ◽  
Vol 537 ◽  
pp. 110-120 ◽  
Author(s):  
Shouping Zhang ◽  
Caiyun Huo ◽  
Jin Xiao ◽  
Tao Fan ◽  
Shumei Zou ◽  
...  

2010 ◽  
Vol 54 (8) ◽  
pp. 3442-3450 ◽  
Author(s):  
Ashley N. Brown ◽  
James J. McSharry ◽  
Qingmei Weng ◽  
Elizabeth M. Driebe ◽  
David M. Engelthaler ◽  
...  

ABSTRACT One of the biggest challenges in the effort to treat and contain influenza A virus infections is the emergence of resistance during treatment. It is well documented that resistance to amantadine arises rapidly during the course of treatment due to mutations in the gene coding for the M2 protein. To address this problem, it is critical to develop experimental systems that can accurately model the selection of resistance under drug pressure as seen in humans. We used the hollow-fiber infection model (HFIM) system to examine the effect of amantadine on the replication of influenza virus, A/Albany/1/98 (H3N2), grown in MDCK cells. At 24 and 48 h postinfection, virus replication was inhibited in a dose-dependent fashion. At 72 and 96 h postinfection, virus replication was no longer inhibited, suggesting the emergence of amantadine-resistant virus. Sequencing of the M2 gene revealed that mutations appeared at between 48 and 72 h of drug treatment and that the mutations were identical to those identified in the clinic for amantadine-resistant viruses (e.g., V27A, A30T, and S31N). Interestingly, we found that the type of mutation was strongly affected by the dose of the drug. The data suggest that the HFIM is a good model for influenza virus infection and resistance generation in humans. The HFIM has the advantage of being a highly controlled system where multiplicity parameters can be directly and accurately controlled and measured.


Sign in / Sign up

Export Citation Format

Share Document