scholarly journals De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum

PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e96855 ◽  
Author(s):  
Samuel E. Fox ◽  
Matthew Geniza ◽  
Mamatha Hanumappa ◽  
Sushma Naithani ◽  
Chris Sullivan ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Daniel Stribling ◽  
Peter L. Chang ◽  
Justin E. Dalton ◽  
Christopher A. Conow ◽  
Malcolm Rosenthal ◽  
...  

Abstract Objectives Arachnids have fascinating and unique biology, particularly for questions on sex differences and behavior, creating the potential for development of powerful emerging models in this group. Recent advances in genomic techniques have paved the way for a significant increase in the breadth of genomic studies in non-model organisms. One growing area of research is comparative transcriptomics. When phylogenetic relationships to model organisms are known, comparative genomic studies provide context for analysis of homologous genes and pathways. The goal of this study was to lay the groundwork for comparative transcriptomics of sex differences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. Data description To examine sex-differential gene expression, short read transcript sequencing and de novo transcriptome assembly were performed. Messenger RNA was isolated from brain tissue of male and female subadult and mature wolf spiders (Schizocosa ocreata). The raw data consist of sequences for the two different life stages in each sex. Computational analyses on these data include de novo transcriptome assembly and differential expression analyses. Sample-specific and combined transcriptomes, gene annotations, and differential expression results are described in this data note and are available from publicly-available databases.


PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0184167 ◽  
Author(s):  
Markus Müller ◽  
Sarah Seifert ◽  
Torben Lübbe ◽  
Christoph Leuschner ◽  
Reiner Finkeldey

2020 ◽  
Author(s):  
Amandeep Mittal ◽  
Inderjit Singh Yadav ◽  
Naresh Kumar Arora ◽  
Rajbir Singh Boora ◽  
Meenakshi Mittal ◽  
...  

Abstract Background Guava ( Psidium guajava L.) is an important fruit crop of tropical and subtropical areas of the world. Genomics resources in guava are scanty. RNA-Seq based tissue specific expressed genomic information, de novo transcriptome assembly, functional annotation and differential expression among contrasting genotypes has potential to set the stage for the functional genomics for traits of commerce. Results Development of fruit from flower involves orchestration of myriad molecular switches. We did comparative transcriptome sequencing on leaf, flower and fruit tissues of cv. Allahabad Safeda to understand important genes and pathways controlling fruit development. Tissue specific RNA sequencing and de novo transcriptome assembly using Trinity pipeline provided us the first reference transcriptome for guava consisting of 84,206 genes comprising 279,792 total transcripts with N50 of 3,603 bp. Blast2GO assigned annotation to 116,629 transcripts and PFam based HMM profile annotated 140,061 transcripts with protein domains. Differential expression with EdgeR identified 3033 genes in Allahabad Safeda tissues and 68 genes among colored tissue comparisons. Mapping the differentially expressed transcripts over molecular pathways indicate significant hormonal changes during fruit development. Comparisons of red vs green peel in guava cv. Apple Colour, white pulp vs red pulp in Punjab pink and fruit maturation vs ripening in non-coloured Allahabad Safeda indicates up-regulation of ethylene biosynthesis accompanied to secondary metabolism like phenylpropanoid and monolignol pathways. Conclusions Benchmarking Universal Single-Copy Orthologs analysis of de novo transcriptome of guava with eudicots identified 93.7% complete BUSCO genes. In silico differential gene expression among tissue types of Allahabad Safeda and validation of candidate genes with qRT-PCR in contrasting colour genotypes promises the utility of this first guava transcriptome for its potential of tapping the genetic elements from germplasm collections for enhancing fruit traits.


Sign in / Sign up

Export Citation Format

Share Document