scholarly journals Targeting the Wnt/β-Catenin Signaling Pathway in Liver Cancer Stem Cells and Hepatocellular Carcinoma Cell Lines with FH535

PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e99272 ◽  
Author(s):  
Roberto Gedaly ◽  
Roberto Galuppo ◽  
Michael F. Daily ◽  
Malay Shah ◽  
Erin Maynard ◽  
...  
2013 ◽  
Vol 30 (5) ◽  
pp. 2056-2062 ◽  
Author(s):  
YANGMEI XU ◽  
YUNQING XIE ◽  
XIANGRU WANG ◽  
XUEFANG CHEN ◽  
QINGYIN LIU ◽  
...  

2020 ◽  
Vol 21 (15) ◽  
pp. 5276 ◽  
Author(s):  
Ge Liu ◽  
Qing Luo ◽  
Hong Li ◽  
Qiuping Liu ◽  
Yang Ju ◽  
...  

Cancer stem cells (CSCs) are considered to be the main cause of tumor recurrence, metastasis, and an unfavorable prognosis. Energy metabolism is closely associated with cell stemness. However, how the stemness of liver cancer stem cells (LCSCs) is regulated by metabolic/oxidative stress remains poorly understood. In this study, we compare the metabolic differences between LCSCs and the hepatocellular carcinoma cell line HCCLM3, and explore the relationship between metabolism and LCSC stemness. We found that LCSCs from the hepatocellular carcinoma cell HCCLM3 exhibited more robust glucose metabolism than HCCLM3, including glycolysis, oxidative phosphorylation (OXPHOS), and pyruvate produced by glycolysis entering mitochondria for OXPHOS. Moreover, 2-deoxy-D-glucose (2-DG) enhanced the LCSC stemness by upregulating OXPHOS. In contrast, Mdivi-1 reduced the levels of OXPHOS and weakened the stemness by inhibiting mitochondrial fission. Together, our findings clarify the relationship between energy metabolism and LCSC stemness and may provide theoretical guidance and potential therapeutic approaches for liver cancer.


2013 ◽  
Vol 28 (3) ◽  
pp. 267-273 ◽  
Author(s):  
Marica Gemei ◽  
Rosa Di Noto ◽  
Peppino Mirabelli ◽  
Luigi Del Vecchio

In colorectal cancer, CD133+ cells from fresh biopsies proved to be more tumorigenic than their CD133– counterparts. Nevertheless, the function of CD133 protein in tumorigenic cells seems only marginal. Moreover, CD133 expression alone is insufficient to isolate true cancer stem cells, since only 1 out of 262 CD133+ cells actually displays stem-cell capacity. Thus, new markers for colorectal cancer stem cells are needed. Here, we show the extensive characterization of CD133+ cells in 5 different colon carcinoma continuous cell lines (HT29, HCT116, Caco2, GEO and LS174T), each representing a different maturation level of colorectal cancer cells. Markers associated with stemness, tumorigenesis and metastatic potential were selected. We identified 6 molecules consistently present on CD133+ cells: CD9, CD29, CD49b, CD59, CD151, and CD326. By contrast, CD24, CD26, CD54, CD66c, CD81, CD90, CD99, CD112, CD164, CD166, and CD200 showed a discontinuous behavior, which led us to identify cell type-specific surface antigen mosaics. Finally, some antigens, e.g. CD227, indicated the possibility of classifying the CD133+ cells into 2 subsets likely exhibiting specific features. This study reports, for the first time, an extended characterization of the CD133+ cells in colon carcinoma cell lines and provides a “dictionary” of antigens to be used in colorectal cancer research.


2021 ◽  
Vol 20 ◽  
pp. 153303382110279
Author(s):  
SiZhe Yu ◽  
Yu Wang ◽  
KeJia Lv ◽  
Jia Hou ◽  
WenYuan Li ◽  
...  

Purpose: The high fatality-to-case ratio of hepatocellular carcinoma is directly related to metastasis. The signal transducer and activator of transcription-3 is a key mediator of the cytokine and growth factor signaling pathways and drives the transcription of genes responsible for cancer-associated phenotypes. However, so far, no specific inhibitor for signal transducer and activator of transcription-3 has been used in clinical practice. Therefore, targeting the signal transducer and activator of transcription-3 for cancer therapy is highly desired to improve outcomes in patients with hepatocellular carcinoma. Experimental Design: Using the small-molecule inhibitor NT157, the effect of signal transducer and activator of transcription-3 inhibition on cell migration was tested in hepatocellular carcinoma cell lines and a lung metastasis model of the disease. Results: NT157 significantly inhibited the migration of hepatocellular carcinoma cell lines in vitro and lung metastasis of hepatocellular carcinoma in vivo. Mechanistically, it inhibited the phospho-signal transducer and activator of transcription-3 in a dose- and time-dependent manner. Furthermore, NT157 treatment suppressed the c-Jun activation domain-binding protein-1 levels in the nucleus but no significant decrease was observed in its expression in the cytoplasm. Finally, high mRNA expression levels of signal transducer and activator of transcription-3 and c-Jun activation domain-binding protein-1 in hepatocellular carcinoma were associated with significantly low survival rates. Conclusion: NT157 inhibits hepatocellular carcinoma migration and metastasis by downregulating the signal transducer and activator of transcription-3/c-Jun activation domain-binding protein-1 signaling pathway and targeting it may serve as a novel therapeutic strategy for the clinical management of hepatocellular carcinoma in the future.


Sign in / Sign up

Export Citation Format

Share Document