scholarly journals An Unusual Abscisic Acid and Gibberellic Acid Synergism Increases Somatic Embryogenesis, Facilitates Its Genetic Analysis and Improves Transformation in Medicago truncatula

PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e99908 ◽  
Author(s):  
Kim E. Nolan ◽  
Youhong Song ◽  
Siyang Liao ◽  
Nasir A. Saeed ◽  
Xiyi Zhang ◽  
...  
1984 ◽  
Vol 62 (6) ◽  
pp. 1245-1249 ◽  
Author(s):  
L. S. Kott ◽  
K. J. Kasha

Somatic embryogenesis was induced in callus previously initiated from immature embryos of barley. These cultures ranged in age from 6 weeks to 30 months. Embryoids were readily initiated from homogenized suspension-grown aggregates when plated on modified B5 media with 2,4-dichlorophenoxyacetic acid. Low concentrations (0.1 and 0.05 mg∙L−1) of abscisic acid promoted further maturation of embryoids, while gibberellic acid (1 mg∙L−1) and kinetin (0.1 mg∙L−1) were used in the media to encourage embryoid germination. The development of somatic embryoids from initiation through maturation and germination is described.


1998 ◽  
Vol 46 (1) ◽  
pp. 151 ◽  
Author(s):  
K. E. Nolan ◽  
R. J. Rose

Medicago truncatula (Jemalong 2HA) can be regenerated by somatic embryogenesis utilising 1-naphthalene acetic acid (NAA) and 6-benzylaminopurine (BAP). There is a requirement for both NAA and BAP for callus induction and embryo formation. There is no requirement for a drop in auxin concentration to induce embryos. Abscisic acid (ABA) when present with NAA and BAP during embryo formation at a concentration of 1 µM, increases the number of embryos per callus. The ABA treatment stimulates embryo numbers in both light and darkness. The conversion efficiency of embryo to plant is unchanged irrespective of the presence of ABA during embryo formation, indicating that ABA does not improve the regeneration of the embryos once formed. Importantly, the presence of light in the embryo formation period causes a marked inhibition of embryo conversion.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 715
Author(s):  
Aline Kadri ◽  
Ghislaine Grenier De March ◽  
François Guerineau ◽  
Viviane Cosson ◽  
Pascal Ratet

The induction of plant somatic embryogenesis is often a limiting step for plant multiplication and genetic manipulation in numerous crops. It depends on multiple signaling developmental processes involving phytohormones and the induction of specific genes. The WUSCHEL gene (WUS) is required for the production of plant embryogenic stem cells. To explore a different approach to induce somatic embryogenesis, we have investigated the effect of the heterologous ArabidopsisWUS gene overexpression under the control of the jasmonate responsive vsp1 promoter on the morphogenic responses of Medicago truncatula explants. WUS expression in leaf explants increased callogenesis and embryogenesis in the absence of growth regulators. Similarly, WUS expression enhanced the embryogenic potential of hairy root fragments. The WUS gene represents thus a promising tool to develop plant growth regulator-free regeneration systems or to improve regeneration and transformation efficiency in recalcitrant crops.


2007 ◽  
Vol 304 (1) ◽  
pp. 297-307 ◽  
Author(s):  
Yan Liang ◽  
David M. Mitchell ◽  
Jeanne M. Harris

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
J. Lema-Rumińska ◽  
K. Goncerzewicz ◽  
M. Gabriel

Having produced the embryos of cactusCopiapoa tenuissimaRitt. formamonstruosaat the globular stage and callus, we investigated the effect of abscisic acid (ABA) in the following concentrations: 0, 0.1, 1, 10, and 100 μM on successive stages of direct (DSE) and indirect somatic embryogenesis (ISE). In the indirect somatic embryogenesis process we also investigated a combined effect of ABA (0, 0.1, 1 μM) and sucrose (1, 3, 5%). The results showed that a low concentration of ABA (0-1 μM) stimulates the elongation of embryos at the globular stage and the number of correct embryos in direct somatic embryogenesis, while a high ABA concentration (10–100 μM) results in growth inhibition and turgor pressure loss of somatic embryos. The indirect somatic embryogenesis study in this cactus suggests that lower ABA concentrations enhance the increase in calli fresh weight, while a high concentration of 10 μM ABA or more changes calli color and decreases its proliferation rate. However, in the case of indirect somatic embryogenesis, ABA had no effect on the number of somatic embryos and their maturation. Nevertheless, we found a positive effect of sucrose concentration for both the number of somatic embryos and the increase in calli fresh weight.


1970 ◽  
Vol 33 (3) ◽  
pp. 493-502 ◽  
Author(s):  
Sridhar Gutam ◽  
Virendra Nath ◽  
GC Srivastava

A pot experiment was conducted in the rabi (post rainy) seasons of 2001 and 2002 to study the genotypic differences in grain growth rate and endogenous hormonal content in the developing grains of hexaploid and tetraploid wheat. The endogenous hormonal contents of grains in both the ploidy levels had changed in sequence. At 5 days after anthesis (DAA), gibberellic acid (GA3); at 15 DAA (rapid growth phase), indole-acetic acid (IAA); at 25 DAA (dough stage), abscisic acid (ABA) were maximum. At 35 DAA, all the endogenous hormonal level decreased and among the hormones, ABA was highest followed by IAA and GA3. Hexaploids recorded higher concentrations of endogenous hormones (13.38% IAA, 17.89% GA3, and 14.7% ABA) on fresh weight basis and resulted in higher seed weight (56.99 mg/grain) and grain growth rate (0.009 g/g/day) compared to tetraploids (49.08 mg/grain; 0.008 g/g/day) on dry weight basis by better mobilization of photosynthates during grain filling. Key Words: Grain growth rate, hormones, indole-acetic acid, gibberellic acid, abscisic acid. doi:10.3329/bjar.v33i3.1608 Bangladesh J. Agril. Res. 33(3) : 493-502, September 2008


1994 ◽  
Vol 119 (3) ◽  
pp. 408-413 ◽  
Author(s):  
Anwar A. Khan

A gibberellic acid (GA) biosynthesis inhibitor, tetcyclacis, induced dormancy in nondormant seeds of lettuce (Lactuca sativa L.), tomato (Lycopersicon esculentum Mill.), pepper (Capsicum annuum L.), carrot [Daucus carota var. sativus (Hoffn.)], onion (Allium cepa L.), celery (Apium graveolens L.), and impatiens (Impatiens novette), as most of the seeds failed to germinate after washing under conditions that permitted germination before dormancy induction. In lettuce seeds, tetcyclacis and paclobutrazol were more effective in inhibiting germination in light than in darkness. A 16- to 24-h soak treatment with tetcyclacis was sufficient to induce dormancy in nearly all seeds. Tetcyclacis failed to induce dormancy if applied after 6 h presoak in water. Dormancy induced by tetcyclacis was released by GA4+7 (a mixture of gibberellin A4 and A7), light, and moist-chilling treatments. When GA4+7 was applied with tetcyclacis, dormancy induction was prevented under both favorable, e.g., 25C, and unfavorable, e.g., 5C, or low water potential (Ψ), germination conditions. Unlike tetcyclacis, abscisic acid (ABA) failed to induce dormancy in lettuce seeds. Thermodormancy induction in lettuce seeds at 35C was prevented by fluridone. However, neither ABA nor tetcyclacis countered its effect. Dormancy was also induced in lettuce seeds by ancymidol, flurprimidol, or paclobutrazol. Dormancy induced by tetcyclacis in pepper, tomato, carrot, and onion seeds was released by GA4+7, but not by irradiation or moist-chilling. Chemical names used: 5-(4-chlorophenyl)-3, 4, 5, 9, 10-pentaazatetracyclo [5.4.102,6.08,11]-dodeca-3, 9-diene (tetcyclacis); 1-(4-chlorophenyl)-4, 4-dimethyl-2-(1H-1, 2, 4-triazole-1-yl)-3-pentanol (paclobutrazol); α-cyclopropyl-α-(4-methoxyphenyl)-5-pyrimidine methanol (ancymidol); α-(1-methyl)-α-[4-(trifluoromethoxy) phenyl]-5-pyrimidine-methanol (flurprimidol); 1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4 (1H)-pyridinone (fluridone).


Sign in / Sign up

Export Citation Format

Share Document