scholarly journals Profiling the Mitochondrial Proteome of Leber’s Hereditary Optic Neuropathy (LHON) in Thailand: Down-Regulation of Bioenergetics and Mitochondrial Protein Quality Control Pathways in Fibroblasts with the 11778G>A Mutation

PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e106779 ◽  
Author(s):  
Aung Win Tun ◽  
Sakdithep Chaiyarit ◽  
Supannee Kaewsutthi ◽  
Wanphen Katanyoo ◽  
Wanicha Chuenkongkaew ◽  
...  
2020 ◽  
Vol 21 (8) ◽  
pp. 3027 ◽  
Author(s):  
Lei Zhou ◽  
James Chun Yip Chan ◽  
Stephanie Chupin ◽  
Naïg Gueguen ◽  
Valérie Desquiret-Dumas ◽  
...  

Leber’s hereditary optic neuropathy (LHON, MIM#535000) is the most common form of inherited optic neuropathies and mitochondrial DNA-related diseases. The pathogenicity of mutations in genes encoding components of mitochondrial Complex I is well established, but the underlying pathomechanisms of the disease are still unclear. Hypothesizing that oxidative stress related to Complex I deficiency may increase protein S-glutathionylation, we investigated the proteome-wide S-glutathionylation profiles in LHON (n = 11) and control (n = 7) fibroblasts, using the GluICAT platform that we recently developed. Glutathionylation was also studied in healthy fibroblasts (n = 6) after experimental Complex I inhibition. The significantly increased reactive oxygen species (ROS) production in the LHON group by Complex I was shown experimentally. Among the 540 proteins which were globally identified as glutathionylated, 79 showed a significantly increased glutathionylation (p < 0.05) in LHON and 94 in Complex I-inhibited fibroblasts. Approximately 42% (33/79) of the altered proteins were shared by the two groups, suggesting that Complex I deficiency was the main cause of increased glutathionylation. Among the 79 affected proteins in LHON fibroblasts, 23% (18/79) were involved in energetic metabolism, 31% (24/79) exhibited catalytic activity, 73% (58/79) showed various non-mitochondrial localizations, and 38% (30/79) affected the cell protein quality control. Integrated proteo-metabolomic analysis using our previous metabolomic study of LHON fibroblasts also revealed similar alterations of protein metabolism and, in particular, of aminoacyl-tRNA synthetases. S-glutathionylation is mainly known to be responsible for protein loss of function, and molecular dynamics simulations and 3D structure predictions confirmed such deleterious impacts on adenine nucleotide translocator 2 (ANT2), by weakening its affinity to ATP/ADP. Our study reveals a broad impact throughout the cell of Complex I-related LHON pathogenesis, involving a generalized protein stress response, and provides a therapeutic rationale for targeting S-glutathionylation by antioxidative strategies.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 563 ◽  
Author(s):  
Pooja Jadiya ◽  
Dhanendra Tomar

Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases.


Author(s):  
Jasna Jancic ◽  
Janko Samardzic ◽  
Stevan Stojanovic ◽  
Amalija Stojanovic ◽  
Ana Marija Milanovic ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Sara E. Ratican ◽  
Andrew Osborne ◽  
Keith R. Martin

The eye is at the forefront of the application of gene therapy techniques to medicine. In the United States, a gene therapy treatment for Leber’s congenital amaurosis, a rare inherited retinal disease, recently became the first gene therapy to be approved by the FDA for the treatment of disease caused by mutations in a specific gene. Phase III clinical trials of gene therapy for other single-gene defect diseases of the retina and optic nerve are also currently underway. However, for optic nerve diseases not caused by single-gene defects, gene therapy strategies are likely to focus on slowing or preventing neuronal death through the expression of neuroprotective agents. In addition to these strategies, there has also been recent interest in the potential use of precise genome editing techniques to treat ocular disease. This review focuses on recent developments in gene therapy techniques for the treatment of glaucoma and Leber’s hereditary optic neuropathy (LHON). We discuss recent successes in clinical trials for the treatment of LHON using gene supplementation therapy, promising neuroprotective strategies that have been employed in animal models of glaucoma and the potential use of genome editing techniques in treating optic nerve disease.


Sign in / Sign up

Export Citation Format

Share Document