scholarly journals Akacid Medical Formulation Induces Apoptosis in Myeloid and Lymphatic Leukemic Cell Lines In Vitro and In Vivo

PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0117806 ◽  
Author(s):  
Hannes Neuwirt ◽  
Elisabeth Wabnig ◽  
Clemens Feistritzer ◽  
Iris E. Eder ◽  
Christina Salvador ◽  
...  
Blood ◽  
1991 ◽  
Vol 77 (1) ◽  
pp. 49-54
Author(s):  
H Kodama ◽  
M Iizuka ◽  
T Tomiyama ◽  
K Yoshida ◽  
M Seki ◽  
...  

Some mouse myeloid leukemias induced by X-irradiation and serially transplanted into syngenic mice do not proliferate in vitro even in the presence of hematopoietic factors. To examine whether such leukemic cells can proliferate in response to stromal cells, we cocultured them with MC3T3-G2/PA6 (PA6) preadipocytes, cells that can support the growth of hematopoietic stem cells. All leukemias developed into in vitro cell lines, showing a dependence on contact with the PA6 cells. Two cell lines responded to none of the known hematopoietic factors including interleukin-3 (IL-3), IL-4, IL-5, IL-6, GM-CSF, G-CSF, M-CSF, and Epo. These results demonstrate that the mechanism of the action of PA6 cells is different from that of any of the known hematopoietic factors, and that, because these two leukemic cell lines retained the ability to grow in vivo, responsiveness to the known hematopoietic factors is not essential for the leukemic cell growth in vivo. Furthermore, all leukemic cell lines could respond also to the preadipocytes fixed with formalin, paraformaldehyde, or glutaraldehyde, suggesting that some molecule(s) associated with the surface of PA6 cells or with extracellular matrix secreted by the preadipocytes is responsible for the leukemic cell growth.


Blood ◽  
1991 ◽  
Vol 77 (1) ◽  
pp. 49-54 ◽  
Author(s):  
H Kodama ◽  
M Iizuka ◽  
T Tomiyama ◽  
K Yoshida ◽  
M Seki ◽  
...  

Abstract Some mouse myeloid leukemias induced by X-irradiation and serially transplanted into syngenic mice do not proliferate in vitro even in the presence of hematopoietic factors. To examine whether such leukemic cells can proliferate in response to stromal cells, we cocultured them with MC3T3-G2/PA6 (PA6) preadipocytes, cells that can support the growth of hematopoietic stem cells. All leukemias developed into in vitro cell lines, showing a dependence on contact with the PA6 cells. Two cell lines responded to none of the known hematopoietic factors including interleukin-3 (IL-3), IL-4, IL-5, IL-6, GM-CSF, G-CSF, M-CSF, and Epo. These results demonstrate that the mechanism of the action of PA6 cells is different from that of any of the known hematopoietic factors, and that, because these two leukemic cell lines retained the ability to grow in vivo, responsiveness to the known hematopoietic factors is not essential for the leukemic cell growth in vivo. Furthermore, all leukemic cell lines could respond also to the preadipocytes fixed with formalin, paraformaldehyde, or glutaraldehyde, suggesting that some molecule(s) associated with the surface of PA6 cells or with extracellular matrix secreted by the preadipocytes is responsible for the leukemic cell growth.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3367-3367 ◽  
Author(s):  
Haruka Hiroki ◽  
Masatoshi Takagi ◽  
Yuko Ishi ◽  
Jinhua Piao ◽  
Tomohiro Morio

Introduction: BCR-ABL1 play a key role in the development of chronic myelogenous leukemia and a part of Ph1 positive acute lymphoblastic leukemia (ALL). BCR-ABL1 functions as a tyrosine kinase. Whereas, BCR-ABL1 induces genomic instability by downregulation of BRCA1. An innate error of BRCA1, a molecule involved in the homologous recombination repair pathway, causes hereditary breast and ovarian cancer. PARP inhibitor (PARPi) induces synthetic lethality in BRCA defective cell. Therefore, PARP inhibitor is expected to induce efficient cell death with BCR-ABL1 positive cell. In addition, in some previous reports, reduction of PARP1 activity leads to the upregulation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway and BCR-ABL1 tyrosine kinase activates PI3K/AKT pathway. These findings suggest activation of the PI3K/AKT pathway leading to PARPi resistance in BCR-ABL1 positive leukemic cells. Here, we demonstrate that PARP inhibition attenuates BCR-ABL1 mediated leukemogenesis and aberration of factors associated with PARP inhibitor resistance induces cell death to fully transformed leukemic cells. Method: Bone marrow-derived mononuclear cells (MNC) from wild type mice and BCR-ABL1 transgenic (Tg) mice were exposed to PARPi in vivo, and cell death was analyzed Annexin-V positivity. PARPi sensitivity to BCR-ABL1 expressed cell was also investigated in vivo bone marrow transplantation model using mouse hematopoietic stem cell (HCS) infected with BCR-ABL1 expressing retrovirus. To evaluate more precisely the results obtained in vitro and in vivo transplantation model, the genetical approach was also performed. The Parp1 knockout (KO) mice were crossed with BCR-ABL1 Tg mice. Then, Leukemia development and subsequent mouse death were observed. In vitro, HR activity was examined using DR-GFP assay. Genomic instability was investigated using the breakage-fusion-bridge (BFB) generation.Maintenance of HSC as a progenitor of the leukemic cell was analyzed by repopulation activity using colony assay. The growth-inhibitory effect was assessed using BCR-ABL positive cell lines with PARPi and PI3K inhibitor. Results: BCR-ABL1 Tg mice derived MNC showed more hypersensitivity to PARPi. Mouse HCS was infected with BCR-ABL1 expressing retrovirus and transplanted lethally Olaparib or vehicle was administrated intraperitoneal injection one day after transplantation. BCR-ABL1 mediated leukemic death was observed 1 month after transplantation in sham-treated mouse, whereas, Olaparib treated mouse did not develop BCR-ABL1 mediated leukemia. Parp1 KO BCR-ABL1 Tg mice attenuated leukemia development and extended their survival compared with BCR-ABL1 Tg mice. In vitro experiment revealed HR activity was down-regulated by BCR-ABL1 expression in DR-GFP assay. The number of BFB generation was increased in BCR-ABL1 Tg with Parp1 KO background. The colony-forming activity of BCR-ABL1 positive HSC was totally abolished by PARP inhibition after 3 times serial replating, whereas sham-treated HSC retained repopulation activity. However, the effect of PARPi on BCR-ABL positive leukemic cell lines was controversial. Therefore, leukemic cell lines were treated with the PARPi and inhibitors toward the molecules associated with PARPi resistance. As a result, a combination of PARPi with PI3K inhibitor effectively induce cell death in PARPi resistant BCR-ABL1 positive leukemic cell lines. Conclusion and discussion: Tyrosine kinase inhibitor (TKI) is the gold standard of the therapeutic option of BCR-ABL1 positive leukemia. However, TKI monotherapy is not sufficient for complete eradication of leukemic cells. It is highly expected that molecules effectively induce cell death to leukemic cells combined with TKI. PARPi would be one of these candidates. However, PARPi could not induces efficient death in all of the cancer cells that carry the mutation of molecules associated with the HR defect. Comprehensive genetic analysis to reveal PARPi resistance is important for HRR defective cancer cells. Combination therapy of PARPi and inhibitorstoward the molecules associated with PARPi resistance would be a good therapeutic option for Ph1 positive leukemia. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 41 (6) ◽  
pp. 539-546 ◽  
Author(s):  
Dae-Hyoung Lee ◽  
Pil Sang Jang ◽  
Nack Gyun Chung ◽  
Bin Cho ◽  
Dae Chul Jeong ◽  
...  

2019 ◽  
Vol 18 (13) ◽  
pp. 1892-1899 ◽  
Author(s):  
Tanushree Pal ◽  
Asmita Sharda ◽  
Bharat Khade ◽  
C. Sinha Ramaa ◽  
Sanjay Gupta

Background: At present, ‘pharmaco-epigenomics’ constitutes the hope in cancer treatment owing to epigenetic deregulation- a reversible process and playing a role in malignancy. Objective: Chemotherapy has many limitations like host-tissue toxicity, drug resistance. Hence, it is imperative to unearth targets to better treat cancer. Here, we intend to repurpose a set of our previously synthesized difluorinated Propanediones (PR) as Histone lysine Methyltransferase inhibitors (HMTi). Methods: The cell lines of leukemic origin viz. histiocytic lymphoma (U937) and acute T-cell leukemia (JURKAT) were treated with PR-1 to 7 after docking studies with active pocket of HMT. The cell cycle analysis, in vitro methylation and cell proliferation assays were carried out to delineate their physiological role. Results: A small molecule PR-4, at 1 and 10µM, has shown to alter the methylation of histone H3 and H4 in both cell lines. Also, treatment shows an increase in G2/M population and a subsequent decrease in the G0/G1 population in U937. In JURKAT, an increase in both G2/M and S phase population was observed. The sub-G1 population showed a steady rise with increase in dose and prolonged time intervals in U937 and JURKAT cell lines. In SRB assay, the PR showed a cell growth of 42.6 and 53.4% comparable to adriamycin; 44.5 and 53.2% in U937 and JURKAT, respectively. The study suggests that PR-4 could emerge as a potential HMT inhibitor. Conclusion: The molecule PR-4 could be a lead in developing more histone lysine methyltransferases inhibitors with potential to be pro-apoptotic agents.


Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3839-3846 ◽  
Author(s):  
Colin Longstaff ◽  
R. Elizabeth Merton ◽  
Pere Fabregas ◽  
Jordi Felez

Abstract The 55-kD urokinase (uPA) receptor (uPAR, CD87) is capable of binding uPA and may be involved in regulating cell-associated plasminogen activation and pericellular proteolysis. While investigating the relationship between uPAR levels and plasmin generation, we found that uPA-catalyzed plasminogen activation is stimulated by cells which do not express uPAR. This uPAR-independent mechanism appears to be at least as effective in vitro as uPAR-dependent stimulation, such that stimulation on the order of 30-fold was observed, resulting from improvements in both apparent kcat and apparent Km. The mechanism depends on simultaneous binding of both uPA and plasminogen to the cell and requires the presence of the amino-terminal fragment (ATF), available in single chain and two chain high-molecular-weight uPA, but not low-molecular-weight uPA. Stimulation was observed in all leukemic cell lines investigated at similar optimum concentrations of 106to 107 cells/mL and may be more general. A mechanism is proposed whereby uPA can associate with binding sites on the cell surface of lower affinity, but higher capacity than uPAR, but these are sufficient to stimulate plasmin generation even at subphysiologic uPA concentrations. This mechanism is likely to operate under conditions commonly used for in vitro studies and may have some significance in vivo.


Blood ◽  
1995 ◽  
Vol 85 (5) ◽  
pp. 1237-1245 ◽  
Author(s):  
G Manfioletti ◽  
V Gattei ◽  
E Buratti ◽  
A Rustighi ◽  
A De Iuliis ◽  
...  

Proline-rich homeobox (Prh) is a novel human homeobox-containing gene recently isolated from the CD34+ cell line KG-1A, and whose expression appears mainly restricted to hematopoietic tissues. To define the pattern of Prh expression within the human hematopoietic system, we have analyzed its constitutive expression in purified cells obtained from normal hematopoietic tissues, its levels of transcription in a number of leukemia/lymphoma cell lines representing different lineages and stages of hematolymphopoietic differentiation, and its regulation during in vitro maturation of human leukemic cell lines. Prh transcripts were not detected in leukemic cells of T-lymphoid lineage, irrespective of their maturation stage, and in resting or activated normal T cells from peripheral blood and lymphoid tissues. In contrast, high levels of Prh expression were shown in cells representing early stages of B lymphoid maturation, being maintained up to the level of circulating and tissue mature B cells. Terminal B-cell differentiation appeared to be conversely associated with the deactivation of the gene, since preplasmacytic and plasmocytoma cell lines were found not to express Prh mRNA. Prh transcripts were also shown in human cell lines of early myelomonocytic, erythromegakaryocytic, and preosteoclast phenotypes. Prh expression was lost upon in vitro differentiation of leukemic cell lines into mature monocyte-macrophages and megakaryocytes, whereas it was maintained or upregulated after induction of maturation to granulocytes and osteoclasts. Accordingly, circulating normal monocytes did not display Prh mRNA, which was conversely detected at high levels in purified normal granulocytes. Our data, which show that the acquisition of the differentiated phenotype is associated to Prh downregulation in certain hematopoietic cells but not in others, also suggest that a dysregulated expression of this gene might contribute to the process of leukemogenesis within specific cell lineages.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 461-469 ◽  
Author(s):  
Farzana Sayani ◽  
Felix A. Montero-Julian ◽  
Valerie Ranchin ◽  
Jay M. Prevost ◽  
Sophie Flavetta ◽  
...  

On the basis of the finding of alternatively spliced mRNAs, the -subunit of the receptor for GM-CSF is thought to exist in both a membrane spanning (tmGMR) and a soluble form (solGMR). However, only limited data has been available to support that the solGMR protein product exists in vivo. We hypothesized that hematopoietic cells bearing tmGMR would have the potential to also produce solGMR. To test this hypothesis we examined media conditioned by candidate cells using functional, biochemical, and immunologic means. Three human leukemic cell lines that express tmGMR (HL60, U937, THP1) were shown to secrete GM-CSF binding activity and a solGMR-specific band by Western blot, whereas a tmGMR-negative cell line (K562) did not. By the same analyses, leukapheresis products collected for autologous and allogeneic stem cell transplants and media conditioned by freshly isolated human neutrophils also contained solGMR. The solGMR protein in vivo displayed the same dissociation constant (Kd = 2-5 nmol) as that of recombinant solGMR. A human solGMR ELISA was developed that confirmed the presence of solGMR in supernatant conditioned by the tmGMR-positive leukemic cell lines, hematopoietic progenitor cells, and neutrophils. Furthermore, the ELISA demonstrated a steady state level of solGMR in normal human plasma (36 ± 17 pmol) and provided data suggesting that plasma solGMR levels can be elevated in acute myeloid leukemias.


2017 ◽  
Vol 655 (1) ◽  
pp. 275-286
Author(s):  
Nicoleta Radu ◽  
Viviana Roman ◽  
Marinela Bostan ◽  
Mariana Voicescu ◽  
Ciprian Tanasescu

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Ivanka Kraicheva ◽  
Georgi Momekov ◽  
Rositsa Mihaylova ◽  
Margarita Topashka-Ancheva ◽  
Ivelina Tsacheva ◽  
...  

Two novel polyphosphoesters containing anthracene- and furan-derived aminophosphonate moieties, namely, poly[oxyethylene(aminophosphonate-co-H-phosphonate)]s P-12 and P-13, were synthesized through an addition of poly(oxyethylene H-phosphonate) to 9-anthrylidene-furfurylamine and characterized. The novel polyphosphoester P-12 and a series of previously described anthracene-derived compounds including Schiff bases S-1 and S-2, α-aminophosphonates A-3–A-6, bis-aminophosphonate B-6, two enantiomers A-5a and A-5b, and polyphosphoesters P-8–P-11 containing aminophosphonate units were screened for antitumor activity against a panel of human leukemic cell lines, using cisplatin as a reference cytotoxic agent. As concluded from the cytotoxicity assays, both precursors S-1 and S-2 presented similar cytotoxicity profiles that are cisplatin-like only in the REH cell line. Leader compound of the α-aminophosphonates is A-4 with cell death-inducing properties fully equaling those of the referent drug in all of the screened leukemic cell lines with the only exception being the AML histological subtype HL-60. Some of the polymeric analogues elicited moderate (P-10 and P-12) to low (P-11) cytotoxic activity, whereas the polyphosphoesters P-8 and P-9 produced in vitro antitumor effects largely surpassing cisplatin’s. The compounds P-8, P-9, and A-4 could be potential new materials for anticancer therapeutic purposed.


Sign in / Sign up

Export Citation Format

Share Document