in vitro cell lines
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 0)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 182
Author(s):  
Claudia Miranda ◽  
Alejandro Ruiz-Picazo ◽  
Paula Pomares ◽  
Isabel Gonzalez-Alvarez ◽  
Marival Bermejo ◽  
...  

The main aim of this work is the biopharmaceutical characterization of a new hybrid benzodiazepine-dihydropyridine derivative, JM-20, derived with potent anti-ischemic and neuroprotective effects. In this study, the pKa and the pH-solubility profile were experimentally determined. Additionally, effective intestinal permeability was measured using three in vitro epithelial cell lines (MDCK, MDCK-MDR1 and Caco-2) and an in situ closed-loop intestinal perfusion technique. The results indicate that JM-20 is more soluble at acidic pH (9.18 ± 0.16); however, the Dose number (Do) was greater than 1, suggesting that it is a low-solubility compound. The permeability values obtained with in vitro cell lines as well as with the in situ perfusion method show that JM-20 is a highly permeable compound (Caco-2 value 3.8 × 10−5). The presence of an absorption carrier-mediated transport mechanism was also demonstrated, as well as the efflux effect of P-glycoprotein on the permeability values. Finally, JM-20 was provisionally classified as class 2 according to the biopharmaceutical classification system (BCS) due to its high intestinal permeability and low solubility. The potential good oral absorption of this compound could be limited by its solubility.


2021 ◽  
Vol 11 (5) ◽  
pp. 423
Author(s):  
Mark N. Pernik ◽  
Cylaina E. Bird ◽  
Jeffrey I. Traylor ◽  
Diana D. Shi ◽  
Timothy E. Richardson ◽  
...  

The emergence of three-dimensional human organoids has opened the door for the development of patient-derived cancer organoid (PDO) models, which closely recapitulate parental tumor tissue. The mainstays of preclinical cancer modeling include in vitro cell lines and patient-derived xenografts, but these models lack the cellular heterogeneity seen in human tumors. Moreover, xenograft establishment is resource and time intensive, rendering these models difficult to use to inform clinical trials and decisions. PDOs, however, can be created efficiently and retain tumor-specific properties such as cellular heterogeneity, cell–cell and cell–stroma interactions, the tumor microenvironment, and therapeutic responsiveness. PDO models and drug-screening protocols have been described for several solid tumors and, more recently, for gliomas. Since PDOs can be developed in clinically relevant time frames and share many characteristics of parent tumors, they may enhance the ability to provide precision oncologic care for patients. This review explores the current literature on cancer organoids, highlighting the history of PDO development, organoid models of glioma, and potential clinical applications of PDOs.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chia-Chi Flora Huang ◽  
Shreyas Lingadahalli ◽  
Tunc Morova ◽  
Dogancan Ozturan ◽  
Eugene Hu ◽  
...  

Abstract Background Androgen receptor (AR) is critical to the initiation, growth, and progression of prostate cancer. Once activated, the AR binds to cis-regulatory enhancer elements on DNA that drive gene expression. Yet, there are 10–100× more binding sites than differentially expressed genes. It is unclear how or if these excess binding sites impact gene transcription. Results To characterize the regulatory logic of AR-mediated transcription, we generated a locus-specific map of enhancer activity by functionally testing all common clinical AR binding sites with Self-Transcribing Active Regulatory Regions sequencing (STARRseq). Only 7% of AR binding sites displayed androgen-dependent enhancer activity. Instead, the vast majority of AR binding sites were either inactive or constitutively active enhancers. These annotations strongly correlated with enhancer-associated features of both in vitro cell lines and clinical prostate cancer samples. Evaluating the effect of each enhancer class on transcription, we found that AR-regulated enhancers frequently interact with promoters and form central chromosomal loops that are required for transcription. Somatic mutations of these critical AR-regulated enhancers often impact enhancer activity. Conclusions Using a functional map of AR enhancer activity, we demonstrated that AR-regulated enhancers act as a regulatory hub that increases interactions with other AR binding sites and gene promoters.


Author(s):  
Kaz Kawamura ◽  
Koki Nishitsuji ◽  
Eiichi Shoguchi ◽  
Shigeki Fujiwara ◽  
Noriyuki Satoh

AbstractPlanula larvae of the scleractinian coral,Acropora tenuis, consist of elongated ectodermal cells and developing inner endodermal cells. To establish in vitro cell lines for future studies of cellular and developmental potential of coral cells, larvae were successfully dissociated into single cells by treating them with a tissue dissociation solution consisting of trypsin, EDTA, and collagenase. Brown-colored cells, translucent cells, and pale blue cells were the major components of dissociated larvae. Brown-colored cells began to proliferate transiently in the culture medium that was devised for the coral, while translucent cells and pale blue cells decreased in number about 1 week after cell dissociation. In addition, when a modular protease, plasmin, was added to the cell culture medium, brown-colored cells extended pseudopodia and assumed amorphous shapes. They then continued to proliferate in clumps for more than 6 months with a doubling time of approximately 4–5 days. From 3 weeks of cell culture onward, brown-colored cells often aggregated and exhibited morphogenesis-like behavior to form flat sheets, and blastula-like clusters or gastrula-like spheres. Single cells or cell-clusters of the cell lines were analyzed by RNA-seq. This analysis showed that genes expressed in these cells in vitro wereA. tenuisgenes. Furthermore, each cell line expressed a specific set of genes, suggesting that their properties include gastroderm, secretory cells, undifferentiated cells, neuronal cells, and epidermis. All cell properties were maintained stably throughout successive cell cultures. These results confirm the successful establishment of a coral in vitro cell line.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 434
Author(s):  
Pierre Cheung ◽  
Bo Zhang ◽  
Emmi Puuvuori ◽  
Sergio Estrada ◽  
Mohammad A. Amin ◽  
...  

A validated imaging marker for beta-cell mass would improve understanding of diabetes etiology and enable new strategies in therapy development. We previously identified the membrane-spanning protein GPR44 as highly expressed and specific to the beta cells of the pancreas. The selective GPR44 antagonist MK-7246 was radiolabeled with carbon-11 and the resulting positron-emission tomography (PET) tracer [11C]MK-7246 was evaluated in a pig model and in vitro cell lines. The [11C]MK-7246 compound demonstrated mainly hepatobiliary excretion with a clearly defined pancreas, no spillover from adjacent tissues, and pancreatic binding similar in magnitude to the previously evaluated GPR44 radioligand [11C]AZ12204657. The binding could be blocked by preadministration of nonradioactive MK-7246, indicating a receptor-binding mechanism. [11C]MK-7246 showed strong potential as a PET ligand candidate for visualization of beta-cell mass (BCM) and clinical translation of this methodology is ongoing.


Author(s):  
Nadeem Ghani Khan ◽  
Jacinta Correia ◽  
Divya Adiga ◽  
Padmalatha Satwadi Rai ◽  
Herman Sunil Dsouza ◽  
...  

AbstractBisphenol A [BPA; (CH3)2C(C6H4OH)2] is a synthetic chemical used as a precursor material for the manufacturing of plastics and resins. It gained attention due to its high chances of human exposure and predisposing individuals at extremely low doses to diseases, including cancer. It enters the human body via oral, inhaled, and dermal routes as leach-out products. BPA may be anticipated as a probable human carcinogen. Studies using in vitro cell lines, rodent models, and epidemiological analysis have convincingly shown the increasing susceptibility to cancer at doses below the oral reference dose set by the Environmental Protection Agency for BPA. Furthermore, BPA exerts its toxicological effects at the genetic and epigenetic levels, influencing various cell signaling pathways. The present review summarizes the available data on BPA and its potential impact on cancer and its clinical outcome.


Author(s):  
Mark Pernik ◽  
Cylaina Bird ◽  
Jeffrey Traylor ◽  
Diana Shi ◽  
Timothy Richardson ◽  
...  

The emergence of three-dimensional human organoids has opened the door for development of patient-derived cancer organoid (PDO) models, which closely recapitulate parental tumor tissue. Mainstays of preclinical cancer modeling include in vitro cell lines and patient-derived xenografts, but these models lack the cellular heterogeneity seen in human tumors. Moreover, xenograft establishment is resource- and time-intensive, rendering these models difficult to use to inform clinical trials and decisions. PDOs, however, can be created efficiently and retain tumor-specific properties such as cellular heterogeneity, cell-cell and cell-stromal interactions, tumor microenvironment, and therapeutic responsiveness. PDO models and drug screening protocols have been described for several solid tumors and, more recently, for gliomas. Since PDOs can be developed in clinically relevant timeframes and share many characteristics of parent tumors, they may enhance the ability to provide precision oncologic care for patients. This review explores the current literature on cancer organoids, highlighting the history of PDO development, organoid models of glioma, and potential clinical applications of PDOs.


2020 ◽  
Author(s):  
Liu Yajun ◽  
Zhang Yi ◽  
Jinquan Cui

The establishment of a complex multi-scale model of biological tissue is of great significance for the study of related diseases, and the integration of relevant quantitative data is the premise to achieve this goal. Whereas, the systematic collation of data sets related to placental tissue is relatively lacking. In this study, 18 published transcriptomes (a total of 425 samples) datasets of human pregnancy-related tissues (including chorionic villus and decidua, term placenta, endometrium, in vitro cell lines, etc.) from public databases were collected and analyzed. We compared the most widely used dimensionality reduction (DR) methods to generate a 2D-map for visualization of these data. We also compared the effects of different parameter settings and commonly used manifold learning methods on the results. The result indicates that the nonlinear method can better preserve the small differences between different subtypes of placental tissue than linear method. It led the foundation for the study on accurate computational modeling of placental tissue development in the future. The datasets and analysis provide a useful source for the researchers in the field of the maternal-fetal interface and the establishment of pregnancy.


Sign in / Sign up

Export Citation Format

Share Document