scholarly journals Rapid and Objective Assessment of Neural Function in Autism Spectrum Disorder Using Transient Visual Evoked Potentials

PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0164422 ◽  
Author(s):  
Paige M. Siper ◽  
Vance Zemon ◽  
James Gordon ◽  
Julia George-Jones ◽  
Stacey Lurie ◽  
...  
CoDAS ◽  
2021 ◽  
Vol 33 (2) ◽  
Author(s):  
Mariana Keiko Kamita ◽  
Liliane Aparecida Fagundes Silva ◽  
Carla Gentile Matas

RESUMO Objetivo Identificar e analisar quais são os achados característicos dos Potenciais Evocados Auditivos Corticais (PEAC) em crianças e/ou adolescentes com Transtorno do Espectro do Autismo (TEA) em comparação do desenvolvimento típico, por meio de uma revisão sistemática da literatura. Estratégia de pesquisa Após formulação da pergunta de pesquisa, foi realizada uma revisão da literatura em sete bases de dados (Web of Science, Pubmed, Cochrane Library, Lilacs, Scielo, Science Direct, e Google acadêmico), com os seguintes descritores: transtorno do espectro autista (autism spectrum disorder), transtorno autístico (autistic disorder), potenciais evocados auditivos (evoked potentials, auditory), potencial evocado P300 (event related potentials, P300) e criança (child). A presente revisão foi cadastrada no Próspero, sob número 118751. Critérios de seleção Foram selecionados estudos publicados na integra, sem limitação de idioma, entre 2007 e 2019. Análise dos dados: Foram analisadas as características de latência e amplitude dos componentes P1, N1, P2, N2 e P3 presentes nos PEAC. Resultados Foram localizados 193 estudos; contudo 15 estudos contemplaram os critérios de inclusão. Embora não tenha sido possível identificar um padrão de resposta para os componentes P1, N1, P2, N2 e P3, os resultados da maioria dos estudos demonstraram que indivíduos com TEA podem apresentar diminuição de amplitude e aumento de latência do componente P3. Conclusão Indivíduos com TEA podem apresentar respostas diversas para os componentes dos PEAC, sendo que a diminuição de amplitude e aumento de latência do componente P3 foram as características mais comuns.


2016 ◽  
Vol 8 (5) ◽  
pp. 695-707 ◽  
Author(s):  
Indika B. Wijayasinghe ◽  
Isura Ranatunga ◽  
Namrata Balakrishnan ◽  
Nicoleta Bugnariu ◽  
Dan O. Popa

Author(s):  
Gastone G. Celesia ◽  
Neal S. Peachey

Electrophysiological testing of vision permits the objective assessment of the function of the retina, visual pathways, and cortices. This chapter covers visual evoked potentials (VEPs) and electroretinography (ERG). Flash ERG is useful in evaluating the outer retinal function and specifically helping in the diagnosis of retinal degeneration, monitoring the progress of retinal diseases, monitoring the retinal toxicity of drugs, and understanding the pathophysiology of retinal disorders. VEPs to various stimuli are useful in evaluating macular disorders, diagnosing optic neuropathies, detecting silent pathologies in the absence of other clinical signs of visual impairment, and evaluating disturbances of visual processing in degenerative diseases of the central nervous system. Simultaneous recording of pattern ERG and pattern VEP permits the differentiation between maculopathies and optic neuropathy.


2020 ◽  
Vol 96 (3) ◽  
pp. 386-392
Author(s):  
Mariana Keiko Kamita ◽  
Liliane Aparecida Fagundes Silva ◽  
Fernanda Cristina Leite Magliaro ◽  
Rebeca Yuko Couto Kawai ◽  
Fernanda Dreux Miranda Fernandes ◽  
...  

Fractals ◽  
2018 ◽  
Vol 26 (06) ◽  
pp. 1850092 ◽  
Author(s):  
HAMIDREZA NAMAZI ◽  
TIRDAD SEIFI ALA ◽  
HOVAGIM BAKARDJIAN

Analysis of the brain response to different types of external stimuli has always been one of the major research areas in behavioral neuroscience. The electroencephalography (EEG) technique combined with different signal analysis approaches has been especially successful in revealing the detailed dynamic properties of the neural response to exogenous stimulation. In this analysis, we evaluated the nonlinear structure of the EEG signal using fractal theory in rest and visual stimulation (checkerboard reversal at 8, 14 and 28[Formula: see text]Hz). Our analysis showed a significant influence of stimulation on the fractal structure of EEG signal. On comparison between different conditions, 14-Hz steady-state visual evoked potentials (SSVEPs), previously shown to trigger an optimal brain response, exhibited the greatest influence on the complexity of the EEG signal. On the other hand, we observed the lowest complexity of EEG signal in the post-stimulation rest period. Statistical analysis confirmed significant differences in the fractal structure of the EEG signal between rest and different stimulation conditions. These findings demonstrate for the first time a direct relationship between the efficiency of brain processing and the complexity of the measured EEG signal, which could be employed for objective assessment and classification in various experimental paradigms.


2021 ◽  
Vol 32 (06) ◽  
pp. 379-385
Author(s):  
Kamakshi V. Gopal ◽  
Erin C. Schafer ◽  
Rajesh Nandy ◽  
Ashley Brown ◽  
Joshua Caldwell ◽  
...  

Abstract Background Neurological, structural, and behavioral abnormalities are widely reported in individuals with autism spectrum disorder (ASD); yet there are no objective markers to date. We postulated that by using dominant and nondominant ear data, underlying differences in auditory evoked potentials (AEPs) between ASD and control groups can be recognized. Purpose The primary purpose was to identify if significant differences exist in AEPs recorded from dominant and nondominant ear stimulation in (1) children with ASD and their matched controls, (2) adults with ASD and their matched controls, and (3) a combined child and adult ASD group and control group. The secondary purpose was to explore the association between the significant findings of this study with those obtained in our previous study that evaluated the effects of auditory training on AEPs in individuals with ASD. Research Design Factorial analysis of variance with interaction was performed. Study Sample Forty subjects with normal hearing between the ages of 9 and 25 years were included. Eleven children and 9 adults with ASD were age- and gender-matched with neurotypical peers. Data Collection and Analysis Auditory brainstem responses (ABRs) and auditory late responses (ALRs) were recorded. Adult and child ASD subjects were compared with non-ASD adult and child control subjects, respectively. The combined child and adult ASD group was compared with the combined child and adult control group. Results No significant differences in ABR latency or amplitude were observed between ASD and control groups. ALR N1 amplitude in the dominant ear was significantly smaller for the ASD adult group compared with their control group. Combined child and adult data showed significantly smaller amplitude for ALR N1 and longer ALR P2 latency in the dominant ear for the ASD group compared with the control group. In our earlier study, the top predictor of behavioral improvement following auditory training was ALR N1 amplitude in the dominant ear. Correspondingly, the ALR N1 amplitude in the dominant ear yielded group differences in the current study. Conclusions ALR peak N1 amplitude is proposed as the most feasible AEP marker in the evaluation of ASD.


Sign in / Sign up

Export Citation Format

Share Document