scholarly journals DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation

PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0180467 ◽  
Author(s):  
Elizabeth Nacheva ◽  
Katya Mokretar ◽  
Aynur Soenmez ◽  
Alan M. Pittman ◽  
Colin Grace ◽  
...  
2017 ◽  
Author(s):  
Elizabeth Nacheva ◽  
Katya Mokretar ◽  
Aynur Soenmez ◽  
Alan M Pittman ◽  
Colin Grace ◽  
...  

AbstractPotential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array “waves”, and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance.


2019 ◽  
Author(s):  
Ryan O’Hara ◽  
Enzo Tedone ◽  
Andrew Ludlow ◽  
Ejun Huang ◽  
Beatrice Arosio ◽  
...  

ABSTRACTMitochondria are involved in a number of diverse cellular functions, including energy production, metabolic regulation, apoptosis, calcium homeostasis, cell proliferation and motility as well as free radical generation. Mitochondrial DNA (mtDNA) is present at hundreds to thousands of copies per cell in a tissue-specific manner. Importantly, mtDNA copy number also varies during aging and disease progression and therefore might be considered as a biomarker that mirrors alterations within the human body. Here we present a new quantitative, highly sensitive droplet digital PCR (ddPCR) method (ddMDM; droplet digital mitochondrial DNA measurement) to measure mtDNA copy number not only from cell populations but also from single cells. Our developed assay can generate data in as little as 3 hours, is optimized for 96-well plates and also allows the direct use of cell lysates without the need for DNA purification or nuclear reference genes. Importantly, we show that ddMDM is able to detect differences between samples whose mtDNA copy number was close enough as to be indistinguishable by other commonly used mtDNA quantitation methods. By utilizing ddMDM, we show quantitative changes in mtDNA content per cell across a wide variety of physiological contexts including cancer progression, cell cycle progression, human T cell activation, and human aging.


2019 ◽  
Vol 29 (11) ◽  
pp. 1878-1888 ◽  
Author(s):  
Ryan O'Hara ◽  
Enzo Tedone ◽  
Andrew Ludlow ◽  
Ejun Huang ◽  
Beatrice Arosio ◽  
...  

2021 ◽  
Author(s):  
Stephanie Y Yang ◽  
Charles E Newcomb ◽  
Stephanie L Battle ◽  
Anthony YY Hsieh ◽  
Hailey L Chapman ◽  
...  

Mitochondrial DNA copy number (mtDNA-CN) is a proxy for mitochondrial function and has been of increasing interest to the mitochondrial research community. There are several ways to measure mtDNA-CN, ranging from whole genome sequencing to qPCR. A recent article from the Journal of Molecular Diagnostics described a novel method for measuring mtDNA-CN that is both inexpensive and reproducible. However, we show that certain individuals, particularly those with very low qPCR mtDNA measurements, show poor concordance between qPCR and whole genome sequencing measurements. After examining whole genome sequencing data, this seems to be due to polymorphisms within the D-loop primer region. Non-concordant mtDNA-CN was observed in all instances of polymorphisms at certain positions in the D-loop primer regions, however, not all positions are susceptible to this effect. In particular, these polymorphisms appear disproportionately in individuals with the L, T, and U mitochondrial haplogroups, indicating non-random dropout.


2017 ◽  
Vol 33 (9) ◽  
pp. 1399-1401 ◽  
Author(s):  
Yong Qian ◽  
Thomas J Butler ◽  
Krista Opsahl-Ong ◽  
Nicholas S Giroux ◽  
Carlo Sidore ◽  
...  

2016 ◽  
Vol 67 (1) ◽  
Author(s):  
Claudia P. Gonzalez‐Hunt ◽  
John P. Rooney ◽  
Ian T. Ryde ◽  
Charumathi Anbalagan ◽  
Rashmi Joglekar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document