scholarly journals Probing the role of PPARγ in the regulation of late-onset Alzheimer’s disease-associated genes

PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0196943 ◽  
Author(s):  
Julio Barrera ◽  
Shobana Subramanian ◽  
Ornit Chiba-Falek
2020 ◽  
Vol 21 (12) ◽  
pp. 1164-1173
Author(s):  
Siju Ellickal Narayanan ◽  
Nikhila Sekhar ◽  
Rajalakshmi Ganesan Rajamma ◽  
Akash Marathakam ◽  
Abdullah Al Mamun ◽  
...  

: Alzheimer’s disease (AD) is a progressive brain disorder and one of the most common causes of dementia and death. AD can be of two types; early-onset and late-onset, where late-onset AD occurs sporadically while early-onset AD results from a mutation in any of the three genes that include amyloid precursor protein (APP), presenilin 1 (PSEN 1) and presenilin 2 (PSEN 2). Biologically, AD is defined by the presence of the distinct neuropathological profile that consists of the extracellular β-amyloid (Aβ) deposition in the form of diffuse neuritic plaques, intraneuronal neurofibrillary tangles (NFTs) and neuropil threads; in dystrophic neuritis, consisting of aggregated hyperphosphorylated tau protein. Elevated levels of (Aβ), total tau (t-tau) and phosphorylated tau (ptau) in cerebrospinal fluid (CSF) have become an important biomarker for the identification of this neurodegenerative disease. The aggregation of Aβ peptide derived from amyloid precursor protein initiates a series of events that involve inflammation, tau hyperphosphorylation and its deposition, in addition to synaptic dysfunction and neurodegeneration, ultimately resulting in dementia. The current review focuses on the role of proteomes in the pathogenesis of AD.


2021 ◽  
Vol 79 (3) ◽  
pp. 961-968
Author(s):  
Wolfgang J. Streit ◽  
Habibeh Khoshbouei ◽  
Ingo Bechmann

Microglia constitute the brain’s immune system and their involvement in Alzheimer’s disease has been discussed. Commonly, and in line with the amyloid/neuroinflammation cascade hypothesis, microglia have been portrayed as potentially dangerous immune effector cells thought to be overactivated by amyloid and producing neurotoxic inflammatory mediators that lead to neurofibrillary degeneration. We disagree with this theory and offer as an alternative the microglial dysfunction theory stating that microglia become impaired in their normally neuroprotective roles because of aging, i.e., they become senescent and aging neurons degenerate because they lack the needed microglial support for their survival. Thus, while the amyloid cascade theory relies primarily on genetic data, the dysfunction theory incorporates aging as a critical etiological factor. Aging is the greatest risk factor for the sporadic (late-onset) and most common form of Alzheimer’s disease, where fully penetrant genetic mutations are absent. In this review, we lay out and discuss the human evidence that supports senescent microglial dysfunction and conflicts with the amyloid/neuroinflammation idea.


2011 ◽  
Vol 2011 ◽  
pp. 1-4
Author(s):  
Andrea Tedde ◽  
Irene Piaceri ◽  
Silvia Bagnoli ◽  
Ersilia Lucenteforte ◽  
Uwe Ueberham ◽  
...  

Alzheimer's disease (AD) is the most common form of dementia clinically characterized by progressive impairment of memory and other cognitive functions. Many genetic researches in AD identified one common genetic variant (ε4) in Apolipoprotein E (APOE) gene as a risk factor for the disease. Two independent genome-wide studies demonstrated a new locus on chromosome 9p21.3 implicated in Late-Onset Alzheimer's Disease (LOAD) susceptibility in Caucasians. In the present study, we investigated the role of three SNP's in theCDKN2Agene (rs15515, rs3731246, and rs3731211) and one in theCDKN2Bgene (rs598664) located in 9p21.3 using an association case-control study carried out in a group of Caucasian subjects including 238 LOAD cases and 250 controls. The role ofCDKN2AandCDKN2Bgenetic variants in AD is not confirmed in our LOAD patients, and further studies are needed to elucidate the role of these genes in the susceptibility of AD.


Author(s):  
Sonia Moreno-Grau ◽  
Agustín Ruiz

Genetic characterization of individuals at risk of Alzheimer's disease (AD), i.e. people having amyloid deposits in the brain without symptoms, people suffering from subjective cognitive decline (SCD) or mild cognitive impairment (MCI), has spurred the interests of researchers. However, their pre-dementia genetic profile remains mostly unexplored. In this study, we reviewed the loci related to phenotypes of AD, MCI and SCD from literature and performed the first meta-analyses evaluating the role of apolipoprotein E (APOE) in the risk of conversion from a healthy status to MCI and SCD. For AD dementia risk, an increased number of loci have been identified; to date, 28 genes have been associated with Late Onset AD. In MCI syndrome,APOEis confirmed as a pheno-conversion factor leading from MCI to AD, and clusterin is a promising candidate. Additionally, our meta-analyses revealedAPOEas genetic risk factor to convert from a healthy status to MCI [OR = 1.849 (1.587–2.153);P = 2.80  × 10−15] and to a lesser extent from healthy status to SCD [OR = 1.151 (1.015–1.304);P = 0.028]. Thus, we believe that genetic studies in longitudinal SCD and MCI series may provide new therapeutic targets and improve the existing knowledge of AD. This type of studies must be completed on healthy subjects to better understand the natural disease resistance to brain insults and neurodegeneration.


2012 ◽  
Vol 7 (Suppl 1) ◽  
pp. S22
Author(s):  
Hao Wang ◽  
Min Zhu ◽  
Jian Wang ◽  
Yue Sun ◽  
Yu Tao ◽  
...  

Brain ◽  
2018 ◽  
Vol 141 (8) ◽  
pp. e60-e60 ◽  
Author(s):  
Cinzia Costa ◽  
Michele Romoli ◽  
Paolo Calabresi

2021 ◽  
Author(s):  
Roland Friedel ◽  
Yong Huang ◽  
Minghui Wang ◽  
Shalaka Wahane ◽  
Mitzy Ríos de Anda ◽  
...  

Abstract Communication between glial cells has a profound effect on the pathophysiology of Alzheimer’s disease (AD), but the underlying mechanisms remain unclear. Here, we reveal a role of reactive astrocytes in enforcing cell distancing in the glial nets surrounding amyloid plaques, which restricts microglial coverage of Aβ, a prerequisite to detect and engulf amyloid deposits. This process is mediated through guidance receptor Plexin-B1, which we identified as a key network regulator of late-onset AD. We show that Plexin-B1 is robustly upregulated in plaque-associated astrocytes in a corona-like pattern, and its expression levels correlate with plaque burden and disease severity in AD patients. In APP/PS1 mice, an amyloidogenic model of AD, removing Plexin-B1 led to smaller peri-plaque glial nets with relaxed cell distancing and enhanced glial coverage of Aβ plaques, as well as transcriptional changes in both reactive astrocytes and disease-associated microglia that are linked to glial activation and amyloid clearance. Furthermore, amyloid plaque burden was lowered, together with a shift towards dense-core plaques and reduced neuritic dystrophy. Our data thus support a role of Plexin-B1 in controlling glial net structure by imposing cell distancing, leading to poor glial coverage of Aβ, reduced amyloid clearance and compaction. Relaxing cell distancing by targeting guidance receptors may present an alternative strategy to alleviate neuroinflammation in AD by improving glial coverage of Aβ amyloid and plaque compaction.


2019 ◽  
Author(s):  
Jonathan D Rudge

This paper describes a potential new explanation for Alzheimer’s disease (AD), referred to here as the lipid-invasion model. It proposes that AD is primarily caused by the influx of lipids following the breakdown of the blood brain barrier (BBB). The model argues that a principal role of the BBB is to protect the brain from external lipid access. When the BBB is damaged, it allows a mass influx of (mainly albumin-bound) free fatty acids (FFAs) and lipid-rich lipoproteins to the brain, which in turn causes neurodegeneration, amyloidosis, tau tangles and other AD characteristics. The model also argues that, whilst β-amyloid causes neurodegeneration, as is widely argued, its principal role in the disease lies in damaging the BBB. It is the external lipids, entering as a consequence, that are the primary drivers of neurodegeneration in AD., especially FFAs, which induce oxidative stress, stimulate microglia-driven neuroinflammation, and inhibit neurogenesis. Simultaneously, the larger, more lipid-laden lipoproteins, characteristic of the external plasma but not the CNS, cause endosomal-lysosomal abnormalities, amyloidosis and the formation of tau tangles, all characteristic of AD. In most cases (certainly in late-onset, noninherited forms of the disease) amyloidosis and tau tangle formation are consequences of this external lipid invasion, and in many ways more symptomatic of the disease than causative. In support of this, it is argued that the pattern of damage caused by the influx of FFAs into the brain is likely to resemble the neurodegeneration seen in alcohol-related brain damage (ARBD), a disease that shows many similarities to AD, including the areas of the brain it affects. The fact that neurodegeneration is far more pronounced in AD than in ARBD, and characterised by other features, such as amyloidosis and tau tangles, most likely results from the greater heterogeneity of the lipid assault in AD compared with ethanol alone. The lipid-invasion model, described here, arguably provides the first cohesive, multi-factorial explanation of AD that accounts for all currently known major risk factors, and explains all AD-associated pathologies, including those, such as endosomal-lysosomal dysfunction and excessive lipid droplet formation, that are not well-accounted for in other explanation of this disease.


Sign in / Sign up

Export Citation Format

Share Document