scholarly journals Farmers’ preferred tree species and their potential carbon stocks in southern Burkina Faso: Implications for biocarbon initiatives

PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0199488 ◽  
Author(s):  
Kangbéni Dimobe ◽  
Jérôme Ebagnerin Tondoh ◽  
John C. Weber ◽  
Jules Bayala ◽  
Korotimi Ouédraogo ◽  
...  
2018 ◽  
Author(s):  
Kangbéni Dimobe ◽  
Jérôme E. Tondoh ◽  
John C. Weber ◽  
Jules Bayala ◽  
Karen Greenough ◽  
...  

AbstractThe success of terrestrial carbon sequestration projects for rural development in sub-Saharan Africa lies in the (i) involvement of local populations in the selection of woody species, which represent the biological assets they use to meet their daily needs, and (ii) information about the potential of these species to store carbon. Although the latter is a key prerequisite, there is very little information available. To help fill this gap, the present study was undertaken in four pilot villages (Kou, Dao, Vrassan and Cassou) in Ziro Province, south-central Burkina Faso. The objective was to determine carbon storage potential for top-priority woody species preferred by local smallholders. We used (i) participatory rural appraisal consisting of group discussions and key informant interviews to identify priority species and functions, and (ii) landscape assessment of carbon stocks in the preferred woody species. Results revealed over 79 priority tree and shrub species grouped into six functions, of which medicine, food and income emerge as the most important ones for the communities. For these functions, smallholders overwhelmingly listed Vitellaria paradoxa, Parkia biglobosa, Afzelia africana, Adansonia digitata, Detarium microcarpum, and Lannea microcarpa among the most important tree species. Among the preferred woody species in Cassou and Kou, the highest quantity of carbon was stored by V. paradoxa (1,460.6 ±271.0 kg C ha−1 to 2,798.1±521.0 kg C ha−1) and the lowest by Grewia bicolor (1.6±1.3 kg C ha−1). The potential carbon stored by the preferred tree communities was estimated at 5,766.2 Mg C ha−1 (95% CI: 5,258.2; 6,274.2 Mg C ha−1) in Kou and 6,664.0 Mg C ha−1 (95% CI: 5,810.2; 7,517.8 Mg C ha−1) in Cassou. The findings of this study will help design data-based development of biocarbon projects, which are rare in the West African Sahel despite being considered as one of the most impactful climate change resilient strategies.


2015 ◽  
Vol 2 (2) ◽  
pp. 871-902 ◽  
Author(s):  
H. C. Hombegowda ◽  
O. van Straaten ◽  
M. Köhler ◽  
D. Hölscher

Abstract. Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is however influenced by the type of the agroforestry system established, the soil and climatic conditions and management. In this regional scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): homegarden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across four climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference plot, an agriculture reference and two of the same AFS types of two ages (30–60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50–61 %) in the top meter of soil depending on the climate zone. The establishment of homegarden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in homegarden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.


2015 ◽  
Vol 123 (3) ◽  
pp. 313-327 ◽  
Author(s):  
Kevin E. Mueller ◽  
Sarah E. Hobbie ◽  
Jon Chorover ◽  
Peter B. Reich ◽  
Nico Eisenhauer ◽  
...  

2019 ◽  
Vol 31 (5) ◽  
pp. 1699-1711
Author(s):  
Larba Hubert Balima ◽  
Blandine Marie Ivette Nacoulma ◽  
Philippe Bayen ◽  
Kangbéni Dimobe ◽  
François N’Guessan Kouamé ◽  
...  

Ecosystems ◽  
2016 ◽  
Vol 19 (4) ◽  
pp. 645-660 ◽  
Author(s):  
Seid Muhie Dawud ◽  
Karsten Raulund-Rasmussen ◽  
Timo Domisch ◽  
Leena Finér ◽  
Bogdan Jaroszewicz ◽  
...  

2019 ◽  
Vol 76 ◽  
pp. 04005
Author(s):  
Danardono Danardono ◽  
Eko Haryono ◽  
Margareta Widyastuti

Biduk-Biduk Karst Region has great potential to absorb and store organic carbon in vegetation and soil as well as to absorb inorganic carbon through the process of dissolution. The area has important economic value in supporting the REDD Program in Berau District. The purpose of this study is (1) to identify the amount of carbon stocks in various ecosystems; and (2) to identify the amount of carbon uptake in various ecosystems in the study area. Carbon stocks are computed based on four carbon sinks, i.e., above ground biomass, underground biomass, litter, and soil organic matter using the standard measurement method of SNI 7724: 2011. Carbon sequestration is calculated based on the input of carbon from the atmosphere to ecosystems through litter fall and karstification process and the output of carbon from the ecosystem to the atmosphere through soil respiration. Litter fall is measured using the litter trap method. Karstification is measured with standard limestone tablet method. Soil respiration is calculated with the closed chamber method. The results show that the ecosystems in the Biduk-Biduk Karst Region have a potential carbon stock of 4,800.92 tons/ha with the largest value in the secondary tropical forest of 732.6 tons/ha and the lowest value in the teak forest plantation of 358.2 tons/ha. Ecosystems in the Biduk-Biduk Karst Region have a potential carbon sequestration of 37.33 tons/ha/year with the largest contribution in the primary tropical forest of 7,63 tons/ha/year.


Sign in / Sign up

Export Citation Format

Share Document