scholarly journals Integrating camera imagery, crowdsourcing, and deep learning to improve high-frequency automated monitoring of snow at continental-to-global scales

PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0209649 ◽  
Author(s):  
Margaret Kosmala ◽  
Koen Hufkens ◽  
Andrew D. Richardson
2018 ◽  
Vol 8 (8) ◽  
pp. 1258 ◽  
Author(s):  
Shuming Jiao ◽  
Zhi Jin ◽  
Chenliang Chang ◽  
Changyuan Zhou ◽  
Wenbin Zou ◽  
...  

It is a critical issue to reduce the enormous amount of data in the processing, storage and transmission of a hologram in digital format. In photograph compression, the JPEG standard is commonly supported by almost every system and device. It will be favorable if JPEG standard is applicable to hologram compression, with advantages of universal compatibility. However, the reconstructed image from a JPEG compressed hologram suffers from severe quality degradation since some high frequency features in the hologram will be lost during the compression process. In this work, we employ a deep convolutional neural network to reduce the artifacts in a JPEG compressed hologram. Simulation and experimental results reveal that our proposed “JPEG + deep learning” hologram compression scheme can achieve satisfactory reconstruction results for a computer-generated phase-only hologram after compression.


Author(s):  
Andrés Arévalo ◽  
Jaime Nino ◽  
Diego León ◽  
German Hernandez ◽  
Javier Sandoval

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wei Yin ◽  
Qian Chen ◽  
Shijie Feng ◽  
Tianyang Tao ◽  
Lei Huang ◽  
...  

AbstractThe multi-frequency temporal phase unwrapping (MF-TPU) method, as a classical phase unwrapping algorithm for fringe projection techniques, has the ability to eliminate the phase ambiguities even while measuring spatially isolated scenes or the objects with discontinuous surfaces. For the simplest and most efficient case in MF-TPU, two groups of phase-shifting fringe patterns with different frequencies are used: the high-frequency one is applied for 3D reconstruction of the tested object and the unit-frequency one is used to assist phase unwrapping for the wrapped phase with high frequency. The final measurement precision or sensitivity is determined by the number of fringes used within the high-frequency pattern, under the precondition that its absolute phase can be successfully recovered without any fringe order errors. However, due to the non-negligible noises and other error sources in actual measurement, the frequency of the high-frequency fringes is generally restricted to about 16, resulting in limited measurement accuracy. On the other hand, using additional intermediate sets of fringe patterns can unwrap the phase with higher frequency, but at the expense of a prolonged pattern sequence. With recent developments and advancements of machine learning for computer vision and computational imaging, it can be demonstrated in this work that deep learning techniques can automatically realize TPU through supervised learning, as called deep learning-based temporal phase unwrapping (DL-TPU), which can substantially improve the unwrapping reliability compared with MF-TPU even under different types of error sources, e.g., intensity noise, low fringe modulation, projector nonlinearity, and motion artifacts. Furthermore, as far as we know, our method was demonstrated experimentally that the high-frequency phase with 64 periods can be directly and reliably unwrapped from one unit-frequency phase using DL-TPU. These results highlight that challenging issues in optical metrology can be potentially overcome through machine learning, opening new avenues to design powerful and extremely accurate high-speed 3D imaging systems ubiquitous in nowadays science, industry, and multimedia.


2021 ◽  
Author(s):  
Sreenath Pruthviraj Kyathanahally ◽  
Tommy Hardeman ◽  
Ewa Merz ◽  
Thea Kozakiewicz ◽  
Marta reyes ◽  
...  

Plankton are effective indicators of environmental change and ecosystem health in freshwater habitats, but collection of plankton data using manual microscopic methods is extremely labor- intensive and expensive. Automated plankton imaging offers a promising way forward to monitor plankton communities with high frequency and accuracy in real-time. Yet, manual annotation of millions of images proposes a serious challenge to taxonomists. Deep learning classifiers have been successfully applied in various fields and provided encouraging results when used to categorize marine plankton images. Here, we present a set of deep learning models developed for the identification of lake plankton, and study several strategies to obtain optimal performances, which lead to operational prescriptions for users. To this aim, we annotated into 35 classes over 17900 images of zooplankton and large phytoplankton colonies, detected in Lake Greifensee (Switzerland) with the Dual Scripps Plankton Camera. Our best models were based on transfer learning and ensembling, which classified plankton images with 98% accuracy and 93% F1 score. When tested on freely available plankton datasets produced by other automated imaging tools (ZooScan, FlowCytobot and ISIIS), our models performed better than previously used models. Our annotated data, code and classification models are freely available online.


Sign in / Sign up

Export Citation Format

Share Document