Image High Frequency Information Restoration Algorithm Based on Deep Learning

2021 ◽  
Vol 769 (3) ◽  
pp. 032008
Author(s):  
Liang Ma ◽  
Rongji Zhou ◽  
Ke Zhang
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2587 ◽  
Author(s):  
Xudong Zhang ◽  
Chunlai Li ◽  
Qingpeng Meng ◽  
Shijie Liu ◽  
Yue Zhang ◽  
...  

Super resolution methods alleviate the high cost and high difficulty in applying high resolution infrared image sensors. In this paper we present a novel single image super resolution method for infrared images by combining compressive sensing theory and deep learning. Low resolution images can be regarded as the compressed sampling results of the high resolution ones in compressive sensing. With sparsity in this theory, higher resolution images can be reconstructed. However, because of diverse level of sparsity for different images, the output contains noise and loss of high frequency information. Deep convolutional neural network provides a solution to relieve the noise and supplement some missing high frequency information. By concatenating two methods, we manage to produce better results in super resolution tasks for infrared images than SRCNN and ScSR. PSNR and SSIM values are used to quantify the performance. Applying our method to open datasets and actual infrared imaging experiments, we also find better visual results are preserved.


2014 ◽  
Vol 539 ◽  
pp. 141-145
Author(s):  
Shui Li Zhang

This paper presents new theorems Stevens edge detection method based on cognitive psychology on. Firstly, based on the number of the image is decomposed into high-frequency and low-frequency information, and the high-frequency information extracted by subtracting the maximum number of images to the image after the filter, then the amount of high frequency information into psychological cognitive psychology based on Stevenss theorem. The algorithm suppression refined edge after the non-minimum, applications Pillar K-means algorithm to extract image edge. Experimental results show that: the brightness of the image is converted to the amount of psychological edge can better unify under different brightness values.


2018 ◽  
Vol 8 (8) ◽  
pp. 1258 ◽  
Author(s):  
Shuming Jiao ◽  
Zhi Jin ◽  
Chenliang Chang ◽  
Changyuan Zhou ◽  
Wenbin Zou ◽  
...  

It is a critical issue to reduce the enormous amount of data in the processing, storage and transmission of a hologram in digital format. In photograph compression, the JPEG standard is commonly supported by almost every system and device. It will be favorable if JPEG standard is applicable to hologram compression, with advantages of universal compatibility. However, the reconstructed image from a JPEG compressed hologram suffers from severe quality degradation since some high frequency features in the hologram will be lost during the compression process. In this work, we employ a deep convolutional neural network to reduce the artifacts in a JPEG compressed hologram. Simulation and experimental results reveal that our proposed “JPEG + deep learning” hologram compression scheme can achieve satisfactory reconstruction results for a computer-generated phase-only hologram after compression.


2021 ◽  
Author(s):  
Taiping Mo ◽  
Dehong Chen

Abstract The Invertible Rescaling Net (IRN) is modeling image downscaling and upscaling as a unified task to alleviate the ill-posed problem in the super-resolution task. However, the ability of potential variables of the model embedded high-frequency information is general, which affects the performance of the reconstructed image. In order to improve the ability of embedding high-frequency information and further reduce the complexity of the model, the potential variables and feature extraction of key components of IRN are improved. Attention mechanism and dilated convolution are used to improve the feature extraction block, reduce the parameters of feature extraction block, and allocate more attention to the image details. The high frequency sub-band interpolation method of wavelet domain is used to improve the potential variables, process and save the image edge, and enhance the ability of embedding high frequency information. Experimental results show that compared with IRN model, improved model has less complexity and excellent performance.


Author(s):  
Andrés Arévalo ◽  
Jaime Nino ◽  
Diego León ◽  
German Hernandez ◽  
Javier Sandoval

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wei Yin ◽  
Qian Chen ◽  
Shijie Feng ◽  
Tianyang Tao ◽  
Lei Huang ◽  
...  

AbstractThe multi-frequency temporal phase unwrapping (MF-TPU) method, as a classical phase unwrapping algorithm for fringe projection techniques, has the ability to eliminate the phase ambiguities even while measuring spatially isolated scenes or the objects with discontinuous surfaces. For the simplest and most efficient case in MF-TPU, two groups of phase-shifting fringe patterns with different frequencies are used: the high-frequency one is applied for 3D reconstruction of the tested object and the unit-frequency one is used to assist phase unwrapping for the wrapped phase with high frequency. The final measurement precision or sensitivity is determined by the number of fringes used within the high-frequency pattern, under the precondition that its absolute phase can be successfully recovered without any fringe order errors. However, due to the non-negligible noises and other error sources in actual measurement, the frequency of the high-frequency fringes is generally restricted to about 16, resulting in limited measurement accuracy. On the other hand, using additional intermediate sets of fringe patterns can unwrap the phase with higher frequency, but at the expense of a prolonged pattern sequence. With recent developments and advancements of machine learning for computer vision and computational imaging, it can be demonstrated in this work that deep learning techniques can automatically realize TPU through supervised learning, as called deep learning-based temporal phase unwrapping (DL-TPU), which can substantially improve the unwrapping reliability compared with MF-TPU even under different types of error sources, e.g., intensity noise, low fringe modulation, projector nonlinearity, and motion artifacts. Furthermore, as far as we know, our method was demonstrated experimentally that the high-frequency phase with 64 periods can be directly and reliably unwrapped from one unit-frequency phase using DL-TPU. These results highlight that challenging issues in optical metrology can be potentially overcome through machine learning, opening new avenues to design powerful and extremely accurate high-speed 3D imaging systems ubiquitous in nowadays science, industry, and multimedia.


Sign in / Sign up

Export Citation Format

Share Document