scholarly journals Effects of early adversity on the brain: Larger-volume anterior cingulate cortex in AIDS orphans

PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0210489 ◽  
Author(s):  
Peiying Zuo ◽  
Yinan Wang ◽  
Jia Liu ◽  
Siyuan Hu ◽  
Guoxiang Zhao ◽  
...  
2017 ◽  
Vol 8 (4) ◽  
pp. 43-54
Author(s):  
E.A. Varshaver

This article contains a review of research in the realm of neurophysiology of ethnicity. According to this body of research, there are zones of the brain which get active in response to demonstration of ethnic stimuli. Among these zones are amygdala, anterior cingulate cortex, fusiform face area and others. The article describes the research focused on each of these zones, discusses their weaknesses and projects further research on the crossroads of neurophysiology, cognitive science, psychology and sociology.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
J. Kael White ◽  
Ethan S. Bromberg-Martin ◽  
Sarah R. Heilbronner ◽  
Kaining Zhang ◽  
Julia Pai ◽  
...  

AbstractHumans and other animals often show a strong desire to know the uncertain rewards their future has in store, even when they cannot use this information to influence the outcome. However, it is unknown how the brain predicts opportunities to gain information and motivates this information-seeking behavior. Here we show that neurons in a network of interconnected subregions of primate anterior cingulate cortex and basal ganglia predict the moment of gaining information about uncertain rewards. Spontaneous increases in their information prediction signals are followed by gaze shifts toward objects associated with resolving uncertainty, and pharmacologically disrupting this network reduces the motivation to seek information. These findings demonstrate a cortico-basal ganglia mechanism responsible for motivating actions to resolve uncertainty by seeking knowledge about the future.


2014 ◽  
Vol 111 (9) ◽  
pp. 1717-1720 ◽  
Author(s):  
Abbas Khani

Recently, the functional specialization of prefrontal areas of the brain, and, specifically, the functional dissociation of the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), during decision making have become a particular focus of research. A number of neuropsychological and lesion studies have shown that the OFC and ACC have dissociable functions in various dimensions of decision making, which are supported by their different anatomical connections. A recent single-neuron study, however, described a more complex picture of the functional dissociation between these two frontal regions during decision making. Here, I discuss the results of that study and consider alternative interpretations in connection with other findings.


2019 ◽  
Author(s):  
J. Kael White ◽  
Ethan S. Bromberg-Martin ◽  
Sarah R. Heilbronner ◽  
Kaining Zhang ◽  
Julia Pai ◽  
...  

ABSTRACTHumans and other animals often show a strong desire to know the uncertain rewards their future has in store, even when they cannot use this information to influence the outcome. However, it is unknown how the brain predicts opportunities to gain information and motivates this information seeking behavior. Here we show that neurons in a network of interconnected subregions of primate anterior cingulate cortex and basal ganglia predict the moment of gaining information about uncertain rewards. Spontaneous increases in their information prediction signals are followed by gaze shifts toward objects associated with resolving uncertainty, and pharmacologically disrupting this network reduces the motivation to seek information. These findings demonstrate a cortico-basal ganglia mechanism responsible for motivating actions to resolve uncertainty by seeking knowledge about the future.


2021 ◽  
Author(s):  
Mohammad Ali Salehinejad ◽  
Elham Ghanavati ◽  
Mohammed Harun Ar Rashid ◽  
Michael A Nitsche

Executive functions (EFs), or cognitive control, are higher-order cognitive functions needed for adaptive goal-directed behaviours and are significantly impaired in majority of neuropsychiatric disorders. Different models and approaches are proposed for describing how EFs are functionally organized in the brain. One popular and recently proposed organizing principle of EFs is the distinction between hot (i.e., reward or affective-related) vs cold (i.e., purely cognitive) domains of EFs. The prefrontal cortex is traditionally linked to EFs, but on the other hand, anterior and posterior cingulate cortices are involved in EFs as well. In this review, we first define EFs, their domains, and the appropriate methods for studying them. Second, we discuss how hot and cold EFs are linked to different areas of the prefrontal cortex. Third, we discuss the association of hot vs cold EFs with the cingulate cortex with a specific focus on anterior and posterior compartments. Finally, we propose a functional model for hot and cold EF organization in the brain with a specific focus on the fronto-cingular network. We also discuss clinical implications of hot vs cold cognition in major neuropsychiatric disorders (depression, schizophrenia, anxiety disorders, substance use disorder, attention-deficit hyperactivity disorder, and autism) and attempt to characterize their profile according to the functional dominance of hot-cold cognition. Our model proposes that the lateral prefrontal cortex, along with the dorsal anterior cingulate cortex are more relevant for cold EFs and the medial-orbital prefrontal cortex along with the ventral anterior cingulate cortex, and posterior cingulate cortex are more closely involved in hot EFs. This functional distinction, however, is not absolute and depends on several factors including task features, context, and the extent to which the measured function relies on cognition and emotion or both.


2010 ◽  
Vol 44 (4) ◽  
pp. 301-308 ◽  
Author(s):  
AO Bennett ◽  
R Maxwell

Depression is accompanied by an increase in activity in the amygdala and a decrease in the rostral anterior cingulate cortex (rACC), with the former attributed to a failure of the latter to exert its normal inhibitory influence. This failure is likely due to regression of synaptic connections between the rACC and the amygdala, a process reversed in part by selective serotonin reuptake inhibitors (SSRIs). The present work presents a hypothesis as to how SSRIs might bring about this process and hence normalization of activity, at least in patients that are responsive to SSRIs. Serotonin receptors of the excitatory 5-HT2AR class increase N-methyl-D-aspartate receptor (NMDAR) efficacy, while those of the inhibitory 5-HT1AR class decrease NMDAR efficacy. A decrease of 5-HT transporter (5-HTT) efficacy, either during human development through functional polymorphisms, or in animals through 5-HTT transgenic knockouts, is accompanied by a decrease in 5-HT1AR and hence an increase in excitability and NMDAR efficacy which drives an increase in synaptic spines in the amygdala. As the limbic region of the brain normally possesses high levels of 5-HT1AR the effect of loss of these is to increase excitation in this region, as is observed. Changes in the level of extracellular 5-HT in adult animals also modulates the density of synaptic spines, with these increasing with an increase in 5-HT, possibly as a consequence of increases in 5-HT2AR activity over that of 5-HT1AR. Increasing extracellular levels of 5-HT with SSRIs would then lead to an increase in excitability and in synaptic spines for afferents in the dorsal rostral anterior cingulate cortex but not in the ventral regions such as the amygdala that have few 5-HT2AR. This allows dorsal regions to once more exert their inhibitory influence over ventral regions. In this way, SSRIs may exert their effect in normalizing dorsal hypometabolism and ventral hypermetabolism in those suffering from depression.


2021 ◽  
Vol 11 (8) ◽  
pp. 1096
Author(s):  
Yixuan Chen

Decision making is crucial for animal survival because the choices they make based on their current situation could influence their future rewards and could have potential costs. This review summarises recent developments in decision making, discusses how rewards and costs could be encoded in the brain, and how different options are compared such that the most optimal one is chosen. The reward and cost are mainly encoded by the forebrain structures (e.g., anterior cingulate cortex, orbitofrontal cortex), and their value is updated through learning. The recent development on dopamine and the lateral habenula’s role in reporting prediction errors and instructing learning will be emphasised. The importance of dopamine in powering the choice and accounting for the internal state will also be discussed. While the orbitofrontal cortex is the place where the state values are stored, the anterior cingulate cortex is more important when the environment is volatile. All of these structures compare different attributes of the task simultaneously, and the local competition of different neuronal networks allows for the selection of the most appropriate one. Therefore, the total value of the task is not encoded as a scalar quantity in the brain but, instead, as an emergent phenomenon, arising from the computation at different brain regions.


Author(s):  
Chelsea Matisz ◽  
Aaron Gruber

The brain reciprocally communicates with the rest of the body via neural, endocrine, immune, and other systems. This is crucial for coordinating the complex behavioral and physiological responses needed to cope with the many challenges of life. The Anterior Cingulate Cortex (ACC) is a key brain structure involved in assessing rewards and threats, as well as activating appropriate responses. This is a dynamic process that depends on evolving needs and challenges. Important challenges include illness or injury. These typically involve inflammation and pain, which evoke neuroinflammatory processes in the brain to drive sickness behaviours. In the short term, sickness behaviours are considered adaptive, as they promote convalescence (e.g. low mood; lethargy, fatigue, social withdrawal), and enhanced threat appraisal (e.g. anxiety) to combat increased risk/vulnerability associated with sickness. Chronic inflammation, however, appears to remodel the system to inappropriately activate threat-coping responses, resulting in depressive and/or anxious phenotypes. These mood disorders are particularly pronounced in diseases and disorders associated with gut dysfunction, which feature chronic inflammation and altered ACC function. We propose that chronic inflammation remodels ACC physiology such that it errantly predicts heightened danger based on a mental model (a.k.a ‘schema’) of the world. This evokes chronic activation of threat-coping systems, including endocrine signaling (e.g. adrenaline), and anxiety. Inflammation can be driven by brain systems involving ACC, leading to a feedback-cycle that self-reinforces pathological states. This theory accounts for a wealth of clinical and preclinical data that implicate the ACC in disorders of mood and gastrointestinal function, and reveals a key player in the gut-brain axis that may represent a novel therapeutic target.


2019 ◽  
Author(s):  
Seng Bum Michael Yoo ◽  
Jiaxin Cindy Tu ◽  
Steven T. Piantadosi ◽  
Benjamin Yost Hayden

ABSTRACTIt remains unclear how and to what extent non-human animals make demanding on-the-fly predictions during pursuit. We studied this problem in a novel laboratory pursuit task that incentivizes prediction of future prey positions. We trained three macaques to perform joystick-controlled pursuit of prey that followed intelligent escape algorithms. Subjects reliably aimed towards the prey’s likely future positions, indicating that they generate internal predictions and use those predictions to guide behavior. We then developed a generative model that explains real-time pursuit trajectories and showed that our subjects use prey position, velocity, and acceleration to make predictions. We identified neurons in the dorsal anterior cingulate cortex (dACC) whose responses track these three variables. These neurons multiplexed prediction-related variables with a distinct and explicit representation of the prey’s future position. Our results provide a clear demonstration that the brain can explicitly represent future predictions and highlight the critical role of anterior cingulate cortex for future-oriented cognition.One-sentence summaryIn a dynamic pursuit environment, monkeys actively predict future prey positions and dACC neurons encode these future positions.


2021 ◽  
Vol 5 ◽  
pp. 239821282110077
Author(s):  
Mohammad Ali Salehinejad ◽  
Elham Ghanavati ◽  
Md Harun Ar Rashid ◽  
Michael A. Nitsche

Executive functions, or cognitive control, are higher-order cognitive functions needed for adaptive goal-directed behaviours and are significantly impaired in majority of neuropsychiatric disorders. Different models and approaches are proposed for describing how executive functions are functionally organised in the brain. One popular and recently proposed organising principle of executive functions is the distinction between hot (i.e. reward or affective-related) versus cold (i.e. purely cognitive) domains of executive functions. The prefrontal cortex is traditionally linked to executive functions, but on the other hand, anterior and posterior cingulate cortices are hugely involved in executive functions as well. In this review, we first define executive functions, their domains, and the appropriate methods for studying them. Second, we discuss how hot and cold executive functions are linked to different areas of the prefrontal cortex. Next, we discuss the association of hot versus cold executive functions with the cingulate cortex, focusing on the anterior and posterior compartments. Finally, we propose a functional model for hot and cold executive function organisation in the brain with a specific focus on the fronto-cingular network. We also discuss clinical implications of hot versus cold cognition in major neuropsychiatric disorders (depression, schizophrenia, anxiety disorders, substance use disorder, attention-deficit hyperactivity disorder, and autism) and attempt to characterise their profile according to the functional dominance or manifest of hot–cold cognition. Our model proposes that the lateral prefrontal cortex along with the dorsal anterior cingulate cortex are more relevant for cold executive functions, while the medial–orbital prefrontal cortex along with the ventral anterior cingulate cortex, and the posterior cingulate cortex are more closely involved in hot executive functions. This functional distinction, however, is not absolute and depends on several factors including task features, context, and the extent to which the measured function relies on cognition and emotion or both.


Sign in / Sign up

Export Citation Format

Share Document