scholarly journals Differential effects of 2-deoxy-D-glucose on in vitro expanded human regulatory T cell subsets

PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0217761 ◽  
Author(s):  
Naoki Tanimine ◽  
Sharon K. Germana ◽  
Martin Fan ◽  
Keli Hippen ◽  
Bruce R. Blazar ◽  
...  
2015 ◽  
Vol 157 (2) ◽  
pp. 145-155 ◽  
Author(s):  
C.J. Serrano ◽  
J.E. Castañeda-Delgado ◽  
J.L. Trujillo-Ochoa ◽  
R. González-Amaro ◽  
M.H. García-Hernández ◽  
...  

2020 ◽  
Vol 105 (6) ◽  
pp. 1851-1867 ◽  
Author(s):  
Sijie Fang ◽  
Shuo Zhang ◽  
Yazhuo Huang ◽  
Yu Wu ◽  
Yi Lu ◽  
...  

Abstract Purpose The purpose of this article is to investigate the characteristics of Th1-cell and Th17-cell lineages for very severe Graves orbitopathy (GO) development. Methods Flow cytometry was performed with blood samples from GO and Graves disease (GD) patients and healthy controls, to explore effector T-cell phenotypes. Lipidomics was conducted with serum from very severe GO patients before and after glucocorticoid (GC) therapy. Immunohistochemistry and Western blotting were used to examine orbital-infiltrating Th17 cells or in vitro models of Th17 polarization. Results In GD, Th1 cells predominated in peripheral effector T-cell subsets, whereas in GO, Th17-cell lineage predominated. In moderate-to-severe GO, Th17.1 cells expressed retinoic acid receptor-related orphan receptor-γt (RORγt) independently and produced interleukin-17A (IL-17A), whereas in very severe GO, Th17.1 cells co-expressed RORγt and Tbet and produced interferon-γ (IFN-γ). Increased IFN-γ–producing Th17.1 cells positively correlated with GO activity and were associated with the development of very severe GO. Additionally, GC therapy inhibited both Th1-cell and Th17-cell lineages and modulated a lipid panel consisting of 79 serum metabolites. However, in GC-resistant, very severe GO, IFN-γ–producing Th17.1 cells remained at a high level, correlating with increased serum triglycerides. Further, retro-orbital tissues from GC-resistant, very severe GO were shown to be infiltrated by CXCR3+ Th17 cells expressing Tbet and STAT4 and rich in triglycerides that promoted Th1 phenotype in Th17 cells in vitro. Conclusions Our findings address the importance of Th17.1 cells in GO pathogenesis, possibly promoting our understanding of the association between Th17-cell plasticity and disease severity of GO.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A738-A738
Author(s):  
Bryan Grogan ◽  
Reice James ◽  
Michelle Ulrich ◽  
Shyra Gardai ◽  
Ryan Heiser ◽  
...  

BackgroundRegulatory T cells (Tregs) play an important role in maintaining immune homeostasis, preventing excessive inflammation in normal tissues. In cancer, Tregs hamper anti-tumor immunosurveillance and facilitate immune evasion. Selective targeting of intratumoral Tregs is a potentially promising treatment approach. Orthogonal evaluation of tumor-infiltrating lymphocytes (TILs) in solid tumors in mice and humans have identified CCR8, and several tumor necrosis family receptors (TNFRs), including TNFSFR8 (CD30), as receptors differentially upregulated on intratumoral Tregs compared to normal tissue Tregs and other intratumoral T cells, making these intriguing therapeutic targets.Brentuximab vedotin (BV) is approved for classical Hodgkin lymphoma (cHL) across multiple lines of therapy including frontline use in stage III/IV cHL in combination with doxorubicin, vinblastine, and dacarbazine. BV is also approved for certain CD30-expressing T-cell lymphomas. BV is comprised of a CD30-directed monoclonal antibody conjugated to the highly potent microtubule-disrupting agent monomethyl auristatin E (MMAE).The activity of BV in lymphomas is thought to primarily result from tumor directed intracellular MMAE release, leading to mitotic arrest and apoptotic cell death.The role CD30 plays in normal immune function is unclear, with both costimulatory and proapoptotic roles described. CD30 is transiently upregulated following activation of memory T cells and expression has been linked to highly activated/suppressive IRF4+ effector Tregs.MethodsHere we evaluated the activity of BV on CD30-expressing T cell subsets in vitro and in vivo.ResultsTreatment of enriched T cell subsets with clinically relevant concentrations of BV drove selective depletion of CD30-expressing Tregs > CD30-expressingCD4+ T memory cells, with minimal effects on CD30-expressing CD8+ T memory cells. In a humanized xeno-GVHD model, treatment with BV selectively depleted Tregs resulting in accelerated wasting and robust T cell expansion. The observed differential activity on Tregs is likely attributable to significant increases in CD30 expression and reduced efflux pump activity relative to other T cell subsets. Interestingly, blockade of CD25 signaling prevents CD30 expression on T cell subsets without impacting proliferation, suggesting a link between CD25, the high affinity IL-2 receptor, and CD30 expression.ConclusionsTogether, these data suggest that BV may have an immunomodulatory effect through selective depletion of highly suppressive CD30-expressing Tregs.AcknowledgementsThe authors would like to thank Michael Harrison, PharmD for their assistance in abstract preparation.Ethics ApprovalAnimals studies were approved by and conducted in accordance with Seattle Genetics Institutional Care and Use Committee protocol #SGE-024.


1983 ◽  
Vol 158 (2) ◽  
pp. 571-585 ◽  
Author(s):  
A Moretta ◽  
G Pantaleo ◽  
L Moretta ◽  
M C Mingari ◽  
J C Cerottini

In order to directly assess the distribution of cytolytic T lymphocytes (CTL) and their precursors (CTL-P) in the two major subsets of human T cells, we have used limiting dilution microculture systems to determine their frequencies. The two subsets were defined according to their reactivity (or lack thereof) with B9.4 monoclonal antibody (the specificity of which is similar, if not identical, to that of Leu 2b monoclonal antibody). Both B9+ and B9- cells obtained by sorting peripheral blood resting T cells using the fluorescence-activated cell sorter (FACS) were assayed for total CTL-P frequencies in a microculture system that allows clonal growth of every T cell. As assessed by a lectin-dependent assay, approximately 30% of peripheral blood T cells were CTP-P. In the B9+ subset (which represents 20-30% of all T cells), the CTL-P frequency was close to 100%, whereas the B9- subset had a 25-fold lower CTL-P frequency. It is thus evident that 90% and 10% of the total CTL-P in peripheral blood are confined to the B9+ or B9- T cell subsets, respectively. Analysis of the subset distribution of CTL-P directed against a given set of alloantigens confirmed these findings. CTL-P frequencies were also determined in B9+ and B9- subsets derived from T cells that had been activated in allogenic mixed leucocyte cultures (MLC). Approximately 10% of MLC T cells were CTL-P. This frequency was increased 3.5-fold in the B9+ subset, whereas the B9- subset contained only a small, although detectable number of CTL-P. Moreover, the great majority of the (operationally defined) CTL-P in MLC T cell population were found to be directed against the stimulating alloantigens, thus indicating a dramatic increase in specific CTL-P frequencies following in vitro stimulation in bulk cultures.


2020 ◽  
Vol 88 (11) ◽  
Author(s):  
Emily M. Siebers ◽  
Elizabeth S. Liedhegner ◽  
Michael W. Lawlor ◽  
Ronald F. Schell ◽  
Dean T. Nardelli

ABSTRACT The symptoms of Lyme disease are caused by inflammation induced by species of the Borrelia burgdorferi sensu lato complex. The various presentations of Lyme disease in the population suggest that differences exist in the intensity and regulation of the host response to the spirochete. Previous work has described correlations between the presence of regulatory T cells and recovery from Lyme arthritis. However, the effects of Foxp3-expressing CD4+ T cells existing prior to, and during, B. burgdorferi infection have not been well characterized. Here, we used C57BL/6 “depletion of regulatory T cell” mice to assess the effects these cells have on the arthritis-resistant phenotype characteristic of this mouse strain. We showed that depletion of regulatory T cells prior to infection with B. burgdorferi resulted in sustained swelling, as well as histopathological changes, of the tibiotarsal joints that were not observed in infected control mice. Additionally, in vitro stimulation of splenocytes from these regulatory T cell-depleted mice resulted in increases in gamma interferon and interleukin-17 production and decreases in interleukin-10 production that were not evident among splenocytes of infected mice in which Treg cells were not depleted. Depletion of regulatory T cells at various times after infection also induced rapid joint swelling. Collectively, these findings provide evidence that regulatory T cells existing at the time of, and possibly after, B. burgdorferi infection may play an important role in limiting the development of arthritis.


1997 ◽  
Vol 27 (9) ◽  
pp. 2383-2390 ◽  
Author(s):  
Joyce L. Young ◽  
Judith M. Ramage ◽  
J. S. Hill Gaston ◽  
Peter C. L. Beverley

2018 ◽  
Vol 26 (2) ◽  
pp. 215-227 ◽  
Author(s):  
Haideh Namdari ◽  
Maryam Izad ◽  
Farhad Rezaei ◽  
Zahra Amirghofran

Sign in / Sign up

Export Citation Format

Share Document