scholarly journals Regulatory T Cells Contribute to Resistance against Lyme Arthritis

2020 ◽  
Vol 88 (11) ◽  
Author(s):  
Emily M. Siebers ◽  
Elizabeth S. Liedhegner ◽  
Michael W. Lawlor ◽  
Ronald F. Schell ◽  
Dean T. Nardelli

ABSTRACT The symptoms of Lyme disease are caused by inflammation induced by species of the Borrelia burgdorferi sensu lato complex. The various presentations of Lyme disease in the population suggest that differences exist in the intensity and regulation of the host response to the spirochete. Previous work has described correlations between the presence of regulatory T cells and recovery from Lyme arthritis. However, the effects of Foxp3-expressing CD4+ T cells existing prior to, and during, B. burgdorferi infection have not been well characterized. Here, we used C57BL/6 “depletion of regulatory T cell” mice to assess the effects these cells have on the arthritis-resistant phenotype characteristic of this mouse strain. We showed that depletion of regulatory T cells prior to infection with B. burgdorferi resulted in sustained swelling, as well as histopathological changes, of the tibiotarsal joints that were not observed in infected control mice. Additionally, in vitro stimulation of splenocytes from these regulatory T cell-depleted mice resulted in increases in gamma interferon and interleukin-17 production and decreases in interleukin-10 production that were not evident among splenocytes of infected mice in which Treg cells were not depleted. Depletion of regulatory T cells at various times after infection also induced rapid joint swelling. Collectively, these findings provide evidence that regulatory T cells existing at the time of, and possibly after, B. burgdorferi infection may play an important role in limiting the development of arthritis.

Reproduction ◽  
2018 ◽  
Author(s):  
Xiaoqing Yang ◽  
Meivita Devianti ◽  
Yuan H Yang ◽  
Yih Rue Ong ◽  
Ker Sin Tan ◽  
...  

Perivascular mesenchymal stem/stromal cells can be isolated from the human endometrium using the surface marker SUSD2, and are being investigated for use in tissue repair. Mesenchymal stem/stromal cells from other tissues modulate T cell responses via mechanisms including interleukin-10, prostaglandin E2, TGF-β1 and regulatory T cells. Animal studies demonstrate that endometrial mesenchymal stem/stromal cells can also modify immune responses to implanted mesh, but the mechanism/s they employ have not been explored. We examined the immunomodulatory properties of human endometrial mesenchymal stem/stromal cells on lymphocyte proliferation using mouse splenocyte cultures. Endometrial mesenchymal stem/stromal cells inhibited mitogen-induced lymphocyte proliferation in vitro in a dose-dependent manner. Inhibition of lymphocyte proliferation was not affected by blocking the mouse interleukin-10 receptor or inhibiting prostaglandin production. Endometrial mesenchymal stem/stromal cells continued to restrain lymphocyte proliferation in the presence of an inhibitor of TGF-β receptors, despite a reduction in regulatory T cells. Thus the in vitro inhibition of mitogen-induced lymphocyte proliferation by endometrial mesenchymal stem/stromal cells occurs by a mechanism distinct from the interleukin-10, prostaglandin E2, TGF-β1, and regulatory T cell-mediated mechanisms employed by MSC from other tissues. eMSC were shown to produce interleukin-17A and Dickkopf-1 which may contribute to their immunomodulatory properties. In contrast to MSC from other sources, systemic administration of endometrial mesenchymal stem/stromal cells did not inhibit swelling in a T cell-mediated model of skin inflammation. We conclude that, while endometrial mesenchymal stem/stromal cells can modify immune responses, their immunomodulatory repertoire may not be sufficient to restrain some T cell-mediated inflammatory events.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 65-65
Author(s):  
Kendra N. Taylor ◽  
Vivek R. Shinde Patil ◽  
Meredith Chittenden ◽  
Yolonda L. Colson

Abstract Facilitating cells (FC) are CD8+/αβγδTCR− bone marrow-derived cells that promote allogeneic stem cell (SC) engraftment without graft vs. host disease (GVHD) and induce donor-specific transplantation tolerance. However, the mechanism of FC-mediated allogeneic SC engraftment is not known. We have previously demonstrated that allogeneic SC engraftment promoted by FC result in no clinical evidence of GVHD and is associated with increased number of CD4+25+ regulatory T cells post transplant compared to recipients of bone marrow T cells that develop severe GVHD. This is consistent with the hypothesis that FC facilitate allogeneic SC engraftment and induce tolerance through the induction of a regulatory T cell network. Here we report that CpG activation of toll-like receptor 9 (TLR9) on FC induce CD4+25− naïve T cell differentiation into CD4+25+ regulatory T cells. CpG stimulated and unstimulated CD8+αβγδTCR− FC isolated from bone marrow of C57/BL6 mice by flow cytometric cell sorting FC were co-cultured with splenic CD4+25− T cells for 5 days. CpG stimulated FC co-culture gave rise to CD4+25+ T cells as determined by mRNA expression of the CD4+25+ regulatory T cell marker, FoxP3. In contrast, unstimulated FC in co-culture did not induce regulatory T cells. Because FcRγ is the dominant ITAM receptor (immunoreceptor tyrosine-based activating motif), on FC and given that in vivo studies have demonstrated a requirement for FcRγ expression on FC, we hypothesized that FcRγ gene expression is increased within activated FC. FcRγ gene expression in CpG stimulated and unstimulated FC were compared by real-time PCR analysis. CpG-mediated TLR signaling within FC result in increased gene expression of FcRγ. Taken together, these studies demonstrate that CpG stimulated FC induce the generation of CD4+25+ regulatory T cells in vitro and CpG activation results in increased gene expression of FcRγ, suggesting a requirement for FcRγ signaling in FC-mediated induction of regulatory T cells. These findings provide the first mechanistic evidence that FC are direct inducers of regulatory T cells. Further characterization of cooperative TLR and FcRγ signaling pathways in FC will be critical to defining the mechanism of FC-mediated SC engraftment and the identification of potential therapeutic targets for the clinical induction of tolerance in the future.


2021 ◽  
pp. 135245852110033
Author(s):  
Quentin Howlett-Prieto ◽  
Xuan Feng ◽  
John F Kramer ◽  
Kevin J Kramer ◽  
Timothy W Houston ◽  
...  

Objective: To determine the effect of long-term anti-CD20 B-cell-depleting treatment on regulatory T cell immune subsets that are subnormal in untreated MS patients. Methods: 30 clinically stable MS patients, before and over 38 months of ocrelizumab treatment, were compared to 13 healthy controls, 29 therapy-naïve MS, 9 interferon-β-treated MS, 3 rituximab-treated MS, and 3 rituximab-treated patients with other autoimmune inflammatory diseases. CD8, CD28, CD4, and FOXP3 expression in peripheral blood mononuclear cells was quantitated with flow cytometry. Results: CD8+ CD28− regulatory cells rose from one-third of healthy control levels before ocrelizumab treatment (2.68% vs 7.98%), normalized by 12 months (13.5%), and rose to 2.4-fold above healthy controls after 18 months of ocrelizumab therapy (19.0%). CD4+ FOXP3+ regulatory cells were lower in MS than in healthy controls (7.98%) and showed slight long-term decreases with ocrelizumab. CD8+ CD28− and CD4+ FOXP3+ regulatory T cell percentages in IFN-β-treated MS patients were between those of untreated MS and healthy controls. Interpretation: Long-term treatment with ocrelizumab markedly enriches CD8+ CD28− regulatory T cells and corrects the low levels seen in MS before treatment, while slightly decreasing CD4+ FOXP3+ regulatory T cells. Homeostatic enrichment of regulatory CD8 T cells provides a mechanism, in addition to B cell depletion, for the benefits of anti-CD20 treatment in MS.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mark Engel ◽  
Tom Sidwell ◽  
Ajithkumar Vasanthakumar ◽  
George Grigoriadis ◽  
Ashish Banerjee

Regulatory T cells (Tregs) are a subset of CD4 T cells that are key mediators of immune tolerance. Most Tregs develop in the thymus. In this review we summarise recent findings on the role of diverse signalling pathways and downstream transcription factors in thymic Treg development.


2019 ◽  
Vol 206 ◽  
pp. 41-48
Author(s):  
Haruki Katsumata ◽  
Masako Ikemiyagi ◽  
Toshihito Hirai ◽  
Taichi Kanzawa ◽  
Rumi ishii ◽  
...  

2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


1994 ◽  
Vol 179 (2) ◽  
pp. 493-502 ◽  
Author(s):  
R Bacchetta ◽  
M Bigler ◽  
J L Touraine ◽  
R Parkman ◽  
P A Tovo ◽  
...  

Transplantation of HLA mismatched hematopoietic stem cells in patients with severe combined immunodeficiency (SCID) can result in a selective engraftment of T cells of donor origin with complete immunologic reconstitution and in vivo tolerance. The latter may occur in the absence of clonal deletion of donor T lymphocytes able to recognize the host HLA antigens. The activity of these host-reactive T cells is suppressed in vivo, since no graft-vs. -host disease is observed in these human chimeras. Here it is shown that the CD4+ host-reactive T cell clones isolated from a SCID patient transplanted with fetal liver stem cells produce unusually high quantities of interleukin 10 (IL-10) and very low amounts of IL-2 after antigen-specific stimulation in vitro. The specific proliferative responses of the host-reactive T cell clones were considerably enhanced in the presence of neutralizing concentrations of an anti-IL-10 monoclonal antibody, suggesting that high levels of endogenous IL-10 suppress the activity of these cells. These in vitro data correlate with observations made in vivo. Semi-quantitative polymerase chain reaction analysis carried out on freshly isolated peripheral blood mononuclear cells (PBMC) of the patient indicated that the levels of IL-10 messenger RNA (mRNA) expression were strongly enhanced, whereas IL-2 mRNA expression was much lower than that in PBMC of healthy donors. In vivo IL-10 mRNA expression was not only high in the T cells, but also in the non-T cell fraction, indicating that host cells also contributed to the high levels of IL-10 in vivo. Patient-derived monocytes were found to be major IL-10 producers. Although no circulating IL-10 could be detected, freshly isolated monocytes of the patient showed a reduced expression of class II HLA antigens. However, their capacity to stimulate T cells of normal donors in primary mixed lymphocyte cultures was within the normal range. Interestingly, similar high in vivo IL-10 mRNA expressions in the T and non-T cell compartment were also observed in three SCID patients transplanted with fetal liver stem cells and in four SCID patients transplanted with T cell-depleted haploidentical bone marrow stem cells. Taken together, these data indicate that high endogenous IL-10 production is a general phenomenon in SCID patients in whom allogenic stem cell transplantation results in immunologic reconstitution and induction of tolerance. Both donor T cells and host accessory cells contribute to these high levels of IL-10, which would suppress the activity of host-reactive T cell in vivo.


Sign in / Sign up

Export Citation Format

Share Document