scholarly journals Mega-dams and extreme rainfall: Disentangling the drivers of extensive impacts of a large flooding event on Amazon Forests

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245991
Author(s):  
Washington Luis Oliveira ◽  
Marcelo Brilhante Medeiros ◽  
Pamela Moser ◽  
Marcelo Fragomeni Simon

Extreme weather events and the presence of mega-hydroelectric dams, when combined, present an emerging threat to natural habitats in the Amazon region. To understand the magnitude of these impacts, we used remote sensing data to assess forest loss in areas affected by the extreme 2014 flood in the entire Madeira River basin, the location of two mega-dams. In addition, forest plots (26 ha) were monitored between 2011 and 2015 (14,328 trees) in order to evaluate changes in tree mortality, aboveground biomass (AGB), species composition and community structure around the Jirau reservoir (distance between plots varies from 1 to 80 km). We showed that the mega-dams were the main driver of tree mortality in Madeira basin forests after the 2014 extreme flood. Forest loss in the areas surrounding the reservoirs was 56 km2 in Santo Antônio, 190 km2 in Jirau (7.4–9.2% of the forest cover before flooding), and 79.9% above that predicted in environmental impact assessments. We also show that climatic anomalies, albeit with much smaller impact than that created by the mega-dams, resulted in forest loss along different Madeira sub-basins not affected by dams (34–173 km2; 0.5–1.7%). The impact of flooding was greater in várzea and transitional forests, resulting in high rates of tree mortality (88–100%), AGB decrease (89–100%), and reduction of species richness (78–100%). Conversely, campinarana forests were more flood-tolerant with a slight decrease in species richness (6%) and similar AGB after flooding. Taking together satellite and field measurements, we estimate that the 2014 flood event in the Madeira basin resulted in 8.81–12.47 ∙ 106 tons of dead biomass. Environmental impact studies required for environmental licensing of mega-dams by governmental agencies should consider the increasing trend of climatic anomalies and the high vulnerability of different habitats to minimize the serious impacts of dams on Amazonian biodiversity and carbon stocks.

2021 ◽  
Vol 13 (11) ◽  
pp. 2172
Author(s):  
Sarah Carter ◽  
Martin Herold ◽  
Inge Jonckheere ◽  
Andres Espejo ◽  
Carly Green ◽  
...  

Four workshops and a webinar series were organized, with the aim of building capacity in countries to use Earth Observation Remote Sensing data to monitor forest cover changes and measure emissions reductions for REDD+ results-based payments. Webinars and workshops covered a variety of relevant tools and methods. The initiative was collaboratively organised by a number of Global Forest Observations Initiative (GFOI) partner institutions with funding from the World Bank’s Forest Carbon Partnership Facility (FCPF). The collaborative approach with multiple partners proved to be efficient and was able to reach a large audience, particularly in the case of the webinars. However, the impact in terms of use of tools and training of others after the events was higher for the workshops. In addition, engagement with experts was higher from workshop participants. In terms of efficiency, webinars are significantly cheaper to organize. A hybrid approach might be considered for future initiatives; and, this study of the effectiveness of both in-person and online capacity building can guide the development of future initiatives, something that is particularly pertinent in a COVID-19 era.


2021 ◽  
pp. 1-10
Author(s):  
Carlos M. Delgado-Martínez ◽  
Fredy Alvarado ◽  
Melanie Kolb ◽  
Eduardo Mendoza

Abstract Great attention has been drawn to the impacts of habitat deforestation and fragmentation on wildlife species richness. In contrast, much less attention has been paid to assessing the impacts of chronic anthropogenic disturbance on wildlife species composition and behaviour. We focused on natural small rock pools (sartenejas), which concentrate vertebrate activity due to habitat’s water limitation, to assess the impact of chronic anthropogenic disturbance on the species richness, diversity, composition, and behaviour of medium and large-sized birds and mammals in the highly biodiverse forests of Calakmul, southern Mexico. Camera trapping records of fauna using sartenejas within and outside the Calakmul Biosphere Reserve (CBR) showed that there were no effects on species richness, but contrasts emerged when comparing species diversity, composition, and behaviour. These effects differed between birds and mammals and between species: (1) bird diversity was greater outside the CBR, but mammal diversity was greater within and (2) the daily activity patterns of birds differed slightly within and outside the CBR but strongly contrasted in mammals. Our study highlights that even in areas supporting extensive forest cover, small-scale chronic anthropogenic disturbances can have pervasive negative effects on wildlife and that these effects contrast between animal groups.


2019 ◽  
Vol 12 (1) ◽  
pp. 204 ◽  
Author(s):  
Yang Cao ◽  
Yosihiro Natuhara

Riparian areas are local hot spots of biodiversity that are vulnerable and easily degraded. Comparing plant communities in habitats with different degrees of urbanization may provide valuable information for the management and restoration of these vulnerable habitats. In this study, we explored the impact of urbanization on vegetation communities between artificial and semi-natural habitats within two rivers with different levels of development. We compared species richness, types of vegetation, and composition patterns of the plants in our study. In artificial habitats, the sites with relatively high levels of urbanization had the highest species richness, while in semi-natural habitats, the highest species richness was recorded in the less urbanized sites. Furthermore, every component of urbanization that contributed to the variation of species richness was examined in the current study. In artificial habitats, the proportion of impervious surface was the strongest predictor of the variation in species richness and was associated with the richness of alien, native, and riparian species. In semi-natural habitats, most of the richness of alien and native species were associated with the distance to the city center, and the number of riparian and ruderal species was significantly related to the proportion of impervious surface. Moreover, we found that a high level of urbanization was always associated with a large abundance of alien and ruderal species in both artificial and in semi-natural habitats. We recommend the methods of pair comparison of multiple rivers to analyze the impact of urbanization on plant species in riparian areas and have suggested various management actions for maintaining biodiversity and sustainability in riparian ecosystems.


2017 ◽  
Vol 115 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Kimberly M. Carlson ◽  
Robert Heilmayr ◽  
Holly K. Gibbs ◽  
Praveen Noojipady ◽  
David N. Burns ◽  
...  

Many major corporations and countries have made commitments to purchase or produce only “sustainable” palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km2) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y−1. Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation.


Land ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 88 ◽  
Author(s):  
Arild Angelsen ◽  
Mariel Aguilar-Støen ◽  
John Ainembabazi ◽  
Edwin Castellanos ◽  
Matthew Taylor

This article investigates how migration and remittances affect forest cover in eight rural communities in Guatemala and Chiapas, Mexico. Based on household surveys and remote sensing data, we found little evidence to support the widespread claim that migration takes pressure off forests. In the Chiapas sites, we observed no significant changes in forest cover since 1990, while in the Guatemalan sites, migration may have increased demand for agricultural land, leading to an average annual forest loss of 0.73% during the first decade of the millennium. We suggest that when attractive opportunities exist to invest in agriculture and land expansion, remittances and returnee savings provide fresh capital that is likely to increase pressure on forests. Our study also has implications for the understanding of migration flows; in particular, migration has not implied an exodus out of agriculture for the remaining household members nor for the returning migrants. On the contrary, returning migrants are more likely to be involved in farming activities after their return than they were before leaving.


2013 ◽  
Vol 13 (11) ◽  
pp. 29137-29201 ◽  
Author(s):  
B. P. Guillod ◽  
B. Orlowsky ◽  
D. Miralles ◽  
A. J. Teuling ◽  
P. Blanken ◽  
...  

Abstract. The feedback between soil moisture and precipitation has long been a topic of interest due to its potential for improving weather and seasonal forecasts. The generally proposed mechanism assumes a control of soil moisture on precipitation via the partitioning of the surface turbulent heat fluxes, as assessed via the Evaporative Fraction, EF, i.e. the ratio of latent heat to the sum of latent and sensible heat, in particular under convective conditions. Our study investigates the poorly understood link between EF and precipitation by investigating the impact of before-noon EF on the frequency of afternoon precipitation over the contiguous US, using a statistical analysis of the relationship between multiple datasets of EF and precipitation. We analyze remote sensing data products (EF from GLEAM, Global Land Evaporation: the Amsterdam Methodology, based on satellite observations; and radar precipitation from NEXRAD, the NEXt generation weather RADar system), FLUXNET station data, and the North American Regional Reanalysis (NARR). While most datasets agree on the existence of regions of positive relationship between between EF and precipitation in the Eastern and Southwestern US, observation-based estimates (GLEAM, NEXRAD and to some extent FLUXNET) also indicate a strong relationship in the Central US which is not found in NARR. Investigating these differences, we find that much of these relationships can be explained by precipitation persistence alone, with ambiguous results on the additional role of EF in causing afternoon precipitation. Regional analyses reveal contrasting mechanisms over different regions. Over the Eastern US, our analyses suggest that the apparent EF-precipitation coupling takes place on a short day-to-day time scale and is either atmospherically controlled (from precipitation persistence and potential evaporation) or driven by vegetation interception and subsequent re-evaporation (rather than soil moisture and related plant transpiration/bare soil evaporation), in line with the high forest cover and the wet regime of that region. Over the Central and Southwestern US, the impact of EF on convection triggering is additionally linked to soil moisture variations, owing to the soil moisture–limited climate regime.


2016 ◽  
Vol 77 (2) ◽  
pp. 141-150
Author(s):  
Maciej Bartold

Abstract The work presented here aims at developing cover mask for monitoring forest health in Poland using remote sensing data. The main objective was to assess the impact of using the mask on forest condition monitoring combined with vegetation indices obtained from long-term satellite data. In this study, a new mask developed from the CORINE Land Cover 2012 (CLC2012) database is presented and its one-kilometer pixel size matched to low-resolution data derived from SPOT VEGETATION satellite registrations. For vegetation mapping, only pixels with a cover ≥ 50% of broad-leaved and mixed forests defined by CLC2012 were taken into account. The masked pixels were used to evaluate spatial variability in eight Natural-Forest Regions (NFRs). The largest coverages by masked forests were obtained in Sudetian (65.7%), Carpathian (65.9%) and Baltic (51.3%) regions. For other forest regions the coverage was observed to be around 30-50%. Time-series of the Normalized Difference Vegetation Index (NDVI) comprising SPOT VEGETATION images from 1998 until 2014 were computed and cross-comparison analyses on ≥ 50% and < 50% forest cover masks brought up frequent differences at a level higher than 0.05 NDVI in seven out of eight NFRs. An exception is the Sudetian region, where the data was highly consistent. Furthermore, the Mann-Whitney U non-parametric test revealed statistically significant differences in two regions: Baltic and Masurian-Podlasie NFR. The comparative analysis of NDVI confirmed that there is a need for additional investigation of the quality of newly developed forest mask combined with vegetation and meteorological data.


2017 ◽  
Author(s):  
Claudia L. Gray ◽  
Eleanor M. Slade ◽  
Darren J. Mann ◽  
Owen T. Lewis

ABSTRACTOil palm expansion threatens biodiverse ecosystems across the tropics. However, palm oil is a widely used and profitable crop, so identifying strategies that mitigate the impact of oil palm expansion on biodiversity is important. Riparian reserves (strips of forest along rivers) are protected in many countries for hydrological reasons and also support species that would not otherwise persist in oil palm. However, management guidelines for riparian zones have been informed by relatively few ecological studies. We assessed how the structural features and landscape context of riparian reserves in Sabah, Malaysia affected dung beetle communities. We also tested the use of flight intercept traps to study movement of dung beetles along linear forest corridors. Overall, dung beetle abundance in riparian reserves was 54% lower than in logged forest areas, but all species observed in the logged forest were found in at least one riparian reserve site and both species richness and diversity increased with reserve width. Distance from a large block of continuous forest affected dung beetle community composition but not species richness, abundance, or functional diversity. The amount of forest cover in the surrounding landscape improved the retention of species within riparian reserves, and increases in vegetation complexity corresponded with higher functional richness and functional dispersion. The flight intercept traps did not indicate that there is net movement of individuals out of logged forest areas into the riparian reserves. The species richness of 30 m reserves (the suggested requirement of reserves in Sabah) was only 10% lower than in logged forest, but our data indicate that riparian reserves of at least 50 – 80 m are needed for species richness and diversity to equal that in nearby logged forest. These findings, particularly if they apply more widely to forest-dependent taxa, should be taken into account when setting policy and sustainability guidelines for oil palm plantations, both in areas undergoing conversion from forest and in existing oil palm plantations where forest restoration is required.


2019 ◽  
Vol 28 (7) ◽  
pp. 521 ◽  
Author(s):  
Anastasia Christopoulou ◽  
Giorgos Mallinis ◽  
Emmanuel Vassilakis ◽  
Georgios-Pavlos Farangitakis ◽  
Nikolaos M. Fyllas ◽  
...  

Fires affecting large areas usually create a mosaic of recovering plant communities reflecting their pre-fire composition and local conditions of burning. However, post-fire recovery patterns may also reveal the effects of landscape heterogeneity on the natural regeneration process of plant communities. This study combines field data and remote sensing image interpretation techniques to assess the role of various landscape characteristics in the post-fire recovery process in a mountainous region of Greece burned by a severe wildfire. Remote sensing techniques were used to accurately map secluded, large burned areas. By introducing a temporal component, we explored the correlation between post-fire regeneration and underlying topography, soils and basement rock. Pre-fire forest cover was reduced by more than half 8 years after fire. Regarding the dominant pre-fire forest trees, Abies cephalonica did not regenerate well after fire and most pre-fire stands were converted to grasslands and shrublands. In contrast, Pinus nigra regenerated sufficiently to return to its pre-fire cover, especially in areas underlain by softer basement rock. The use of different time series of high-resolution images improved the quality of the results obtained, justifying their use despite their high cost.


2020 ◽  
Author(s):  
David Ellison ◽  
Emory Ellis

&lt;p&gt;Gaps persist in our comprehension of forest-water interactions and how forest cover potentially alters and sustains precipitation at continental scales. We analyze high-resolution, remote sensing data on forest cover, annual average wind speed and total annual precipitation amounts in order to better understand how forest cover impacts windspeed, and how the forest impact on windspeed can influence the transport and potential re-deposition of atmospheric moisture as rainfall. In this first look at these interactions over the South American continent, uur analysis indicates forests slow windspeed, providing more opportunity for the accumulation and aggregation of both incoming atmospheric moisture and local evapotranspiration, thereby contributing to its increased potential re-deposition as rainfall. Our findings indicate rainfall is greater where forest cover has the effect of slowing windspeed. Moreover, in slowing windspeed, greater forest cover intensifies the hydrologic cycle, providing more opportunities for atmospheric moisture and evapotranspiration to condense and precipitate, as well as re-evaporate and re-transpire back to the atmosphere, thereby potentially increasing the terrestrial rainfall recycling and thus water use and availability across continental surfaces. We are hopeful improved understanding of how forest cover, windspeed and rainfall interact can help motivate future study and promote the development of a more rigorous approach to preserving the hydrologic cycle through the pursuit of Nature-based Solutions to forest landscape restoration.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document