scholarly journals Bioecology of fall armyworm Spodoptera frugiperda (J. E. Smith), its management and potential patterns of seasonal spread in Africa

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0249042
Author(s):  
Saliou Niassy ◽  
Mawufe Komi Agbodzavu ◽  
Emily Kimathi ◽  
Berita Mutune ◽  
El Fatih M. Abdel-Rahman ◽  
...  

Fall armyworm, Spodoptera frugiperda (J. E. Smith) has rapidly spread in sub-Saharan Africa (SSA) and has emerged as a major pest of maize and sorghum in the continent. For effective monitoring and a better understanding of the bioecology and management of this pest, a Community-based Fall Armyworm Monitoring, Forecasting, Early Warning and Management (CBFAMFEW) initiative was implemented in six eastern African countries (Ethiopia, Kenya, Tanzania, Uganda, Rwanda and Burundi). Over 650 Community Focal Persons (CFPs) who received training through the project were involved in data collection on adult moths, crop phenology, cropping systems, FAW management practices and other variables. Data collection was performed using Fall Armyworm Monitoring and Early Warning System (FAMEWS), a mobile application developed by the Food and Agricultural Organization (FAO) of the United Nations. Data collected from the CBFAMFEW initiative in East Africa and other FAW monitoring efforts in Africa were merged and analysed to determine the factors that are related to FAW population dynamics. We used the negative binomial models to test for effect of main crops type, cropping systems and crop phenology on abundance of FAW. We also analysed the effect of rainfall and the spatial and temporal distribution of FAW populations. The study showed variability across the region in terms of the proportion of main crops, cropping systems, diversity of crops used in rotation, and control methods that impact on trap and larval counts. Intercropping and crop rotation had incident rate 2-times and 3-times higher relative to seasonal cropping, respectively. The abundance of FAW adult and larval infestation significantly varied with crop phenology, with infestation being high at the vegetative and reproductive stages of the crop, and low at maturity stage. This study provides an understanding on FAW bioecology, which could be vital in guiding the deployment of FAW-IPM tools in specific locations and at a specific crop developmental stage. The outcomes demonstrate the relevance of community-based crop pest monitoring for awareness creation among smallholder farmers in SSA.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Elizabeth Njuguna ◽  
Phophi Nethononda ◽  
Karim Maredia ◽  
Ruth Mbabazi ◽  
Paul Kachapulula ◽  
...  

Abstract It has been over five years since the first report of an outbreak of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in Africa. The highly invasive pest, native to the Americas, has since spread across the African continent attacking many crops and causing significant yield loss to Africa’s staple crop, maize. From the onset of the outbreak, there have been massive and varied responses from farmers, governments and nongovernmental organizations. This mini-review provides various perspectives on S. frugiperda control in sub-Saharan Africa, building on previously published evidence, and experiences of the authors. It also highlights new technologies and lessons learned so far from the S. frugiperda outbreaks in sub-Saharan Africa, based on which suggestions on possible integrated management approaches are proffered.


Author(s):  
Matthew W. Jordon ◽  
Talya D. Hackett ◽  
Fred Aboagye-Antwi ◽  
Vincent Y. Eziah ◽  
Owen T. Lewis

Abstract Insect crop pests are a major threat to food security in sub-Saharan Africa. Configuration of semi-natural habitat within agricultural landscapes has the potential to enhance biological pest control, helping to maintain yields whilst minimising the negative effects of pesticide use. Fall armyworm (Spodoptera frugiperda, J. E. Smith) is an increasingly important pest of maize in sub-Saharan Africa, with reports of yield loss between 12 and 45%. We investigated the patterns of fall armyworm leaf damage in maize crops in Ghana, and used pitfall traps and dummy caterpillars to assess the spatial distribution of potential fall armyworm predators. Crop damage from fall armyworm at our study sites increased significantly with distance from the field edge, by up to 4% per m. We found evidence that Araneae activity, richness and diversity correspondingly decreased with distance from semi-natural habitat, although Hymenoptera richness and diversity increased. Our preliminary findings suggest that modifying field configuration to increase the proximity of maize to semi-natural habitat may reduce fall armyworm damage and increase natural enemy activity within crops. Further research is required to determine the level of fall armyworm suppression achievable through natural enemies, and how effectively this could safeguard yields.


Insects ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 92 ◽  
Author(s):  
Marc Kenis ◽  
Hannalene du Plessis ◽  
Johnnie Van den Berg ◽  
Malick Ba ◽  
Georg Goergen ◽  
...  

The fall armyworm, Spodoptera frugiperda, a moth originating from tropical and subtropical America, has recently become a serious pest of cereals in sub-Saharan Africa. Biological control offers an economically and environmentally safer alternative to synthetic insecticides that are being used for the management of this pest. Consequently, various biological control options are being considered, including the introduction of Telenomus remus, the main egg parasitoid of S. frugiperda in the Americas, where it is already used in augmentative biological control programmes. During surveys in South, West, and East Africa, parasitized egg masses of S. frugiperda were collected, and the emerged parasitoids were identified through morphological observations and molecular analyses as T. remus. The presence of T. remus in Africa in at least five countries provides a great opportunity to develop augmentative biological control methods and register the parasitoid against S. frugiperda. Surveys should be carried out throughout Africa to assess the present distribution of T. remus on the continent, and the parasitoid could be re-distributed in the regions where it is absent, following national and international regulations. Classical biological control should focus on the importation of larval parasitoids from the Americas.


Author(s):  
Anicet G. Dassou ◽  
Rodrigue Idohou ◽  
Ginette Y. Azandémè-Hounmalon ◽  
Amadou Sabi-Sabi ◽  
Jacques Houndété ◽  
...  

2018 ◽  
Author(s):  
Marion Orsucci ◽  
Yves Moné ◽  
Philippe Audiot ◽  
Sylvie Gimenez ◽  
Sandra Nhim ◽  
...  

AbstractSpodoptera frugiperda, the fall armyworm (FAW), is an important agricultural pest in the Americas and an emerging pest in sub-Saharan Africa, India, East-Asia and Australia, causing damage to major crops such as corn, sorghum and soybean. While FAW larvae are considered polyphagous, differences in diet preference have been described between two genetic variants: the corn strain (sf-C) and the rice strain (sf-R). These two strains are sometimes considered as distinct species, raising the hypothesis that ost plant specialization might have driven their divergence. To test this hypothesis, we irst performed controlled reciprocal transplant (RT) experiments to address the impact of plant diet on several traits linked to the fitness of the sf-C and sf-R strains. The phenotypical data suggest that sf-C is specialized to corn. We then used RNA-Se to identify constitutive transcriptional differences between strains, regardless of diet, in laboratory as well as in natural populations. We found that variations in mitochon rial transcription levels are among the most substantial and consistent differences between the two strains. Since mitochondrial genotypes also vary between the strains, we believe the mitochondria may have a significant role in driving strain divergence.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Clovis Bessong Tanyi ◽  
Raymond Ndip Nkongho ◽  
Justin Nambangia Okolle ◽  
Aaron Suh Tening ◽  
Christopher Ngosong

African farmers are currently grappling with potential control measures for the invasive fall armyworm (FAW) (Spodoptera frugiperda), which has recently emerged as an important economic pest that is ravaging maize fields across the continent. We evaluated the efficacy of the West African black pepper extract and beans intercropping systems as viable FAW control measures and the implication on maize yields. The experiment comprised five treatments (control-no input, dwarf beans intercrop, climbing beans intercrop, West African black pepper extract, and insecticide) with three replications each. FAW severity was assessed at three to seven weeks after planting (WAP), while maize infestation was assessed at seven WAP. FAW severity increased significantly (P<0.05) across WAP for the control and dwarf beans intercrop, with the highest at four and six WAP, respectively. FAW severity also differed (P<0.05) significantly across treatments at four to seven WAP, with the lowest recorded in the extract of West African black pepper (Piper guineense) and the highest in control treatments. Maize infestation ranged from 13 to 93%, with the lowest in the West African black pepper extract and synthetic insecticide, followed by both dwarf and climbing beans intercrops and then the control. The maize yield determined at physiological maturity ranged from 2.2 to 6.3 t ha−1 across treatments and differed significantly, with the highest in the West African black pepper extract and synthetic insecticide, followed by both the dwarf and climbing beans intercrops, as compared to the control. Overall, the West African black pepper extract and beans push cropping systems demonstrated efficacy as viable sustainable alternative control measures for the invasive fall armyworm in maize fields.


2018 ◽  
Author(s):  
Regan Early ◽  
Pablo González-Moreno ◽  
Sean T. Murphy ◽  
Roger Day

AbstractFall armyworm, Spodoptera frugiperda, is a crop pest native to the Americas, which has invaded and spread throughout sub-Saharan Africa within two years. Recent estimates of 20-50% maize yield loss in Africa suggest severe damage to livelihoods. Fall armyworm is still infilling its potential range in Africa, and could spread to other continents. In order to understand fall armyworm’s year-round, global, potential distribution, we used evidence of the effects of temperature and precipitation on fall armyworm life-history, combined with data on native and African distributions to construct Species Distribution Models (SDMs). Fall armyworm has only invaded areas that have a climate similar to the native distribution, validating the use of climatic SDMs. The strongest climatic limits on fall armyworm’s year-round distribution are the coldest annual temperature and the amount of rain in the wet season. Much of sub-Saharan Africa can host year-round fall armyworm populations, but the likelihoods of colonising North Africa and seasonal migrations into Europe are hard to predict. South and Southeast Asia and Australia have climate that would permit fall armyworm to invade. Current trade and transportation routes reveal Australia, China, India, Indonesia, Malaysia, Philippines, and Thailand face high threat of fall armyworm invasions originating from Africa.


Sign in / Sign up

Export Citation Format

Share Document