scholarly journals Small extracellular vesicle-encapsulated miR-181b-5p, miR-222-3p and let-7a-5p: Next generation plasma biopsy-based diagnostic biomarkers for inflammatory breast cancer

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250642
Author(s):  
Sarah Hamdy Ahmed ◽  
Nancy A. Espinoza-Sánchez ◽  
Ahmed El-Damen ◽  
Sarah Atef Fahim ◽  
Mohamed A. Badawy ◽  
...  

Inflammatory breast cancer (IBC) is a rare, but aggressive entity of breast carcinoma with rapid dermal lymphatic invasion in young females. It is either poorly or misdiagnosed as mastitis because of the absence of a distinct lump. Small extracellular vesicles (sEVs) circulating in liquid biopsies are a novel class of minimally invasive diagnostic alternative to invasive tissue biopsies. They modulate cancer progression via shuttling their encapsulated cargo including microRNAs (miRNAs) into recipient cells to either trigger signaling or induce malignant transformation of targeted cells. Plasma sEVs < 200 nm were isolated using a modified cost-effective polyethylene glycol (PEG)-based precipitation method and compared to standard methods, namely ultracentrifugation and a commercial kit, where the successful isolation was verified by different approaches. We evaluated the expression levels of selected sEV-derived miR-181b-5p, miR-222-3p and let-7a-5p using quantitative real PCR (qPCR). Relative to non-IBC, our qPCR data showed that sEV-derived miR-181b-5p and miR-222-3p were significantly upregulated, whereas let-7a-5p was downregulated in IBC patients. Interestingly, receiver operating characteristic (ROC) curves analysis revealed that diagnostic accuracy of let-7a-5p alone was the highest for IBC with an area under curve (AUC) value of 0.9188, and when combined with miR-222-3p the AUC was improved to 0.973. Further, 38 hub genes were identified using bioinformatics analysis. Together, circulating sEV-derived miR-181b-5p, miR-222-3p and let-7a-5p serve as promising non-invasive diagnostic biomarkers for IBC.

Author(s):  
Dan Li ◽  
Wenjia Lai ◽  
Di Fan ◽  
Qiaojun Fang

Breast cancer is the most common malignant disease in women worldwide. Early diagnosis and treatment can greatly improve the management of breast cancer. Liquid biopsies are becoming convenient detection methods for diagnosing and monitoring breast cancer due to their non-invasiveness and ability to provide real-time feedback. A range of liquid biopsy markers, including circulating tumor proteins, circulating tumor cells, and circulating tumor nucleic acids, have been implemented for breast cancer diagnosis and prognosis, with each having its own advantages and limitations. Circulating extracellular vesicles are messengers of intercellular communication that are packed with information from mother cells and are found in a wide variety of bodily fluids; thus, they are emerging as ideal candidates for liquid biopsy biomarkers. In this review, we summarize extracellular vesicle protein markers that can be potentially used for the early diagnosis and prognosis of breast cancer or determining its specific subtypes.


F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 1362
Author(s):  
Colin L. Hisey ◽  
Petr Tomek ◽  
Yohanes N.S. Nursalim ◽  
Lawrence W. Chamley ◽  
Euphemia Leung

Extracellular vesicles (EVs) are emerging as key players in breast cancer progression and hold immense promise as cancer biomarkers. However, difficulties in obtaining sufficient quantities of EVs for the identification of potential biomarkers hampers progress in this area. To circumvent this obstacle, we cultured BT-474 breast cancer cells in a two-chambered bioreactor with CDM-HD serum replacement to significantly improve the yield of cancer cell-associated EVs and eliminate bovine EV contamination. Cancer-relevant mRNAs BIRC5 (Survivin) and YBX1, as well as long-noncoding RNAs HOTAIR, ZFAS1, and AGAP2-AS1 were detected in BT-474 EVs by quantitative RT-PCR. Bioinformatics meta-analyses showed that BIRC5 and HOTAIR RNAs were substantially upregulated in breast tumours compared to non-tumour breast tissue, warranting further studies to explore their usefulness as biomarkers in patient EV samples. We envision this effective procedure for obtaining large amounts of cancer-specific EVs will accelerate discovery of EV-associated RNA biomarkers for cancers including HER2+ breast cancer.


F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 1362
Author(s):  
Colin L. Hisey ◽  
Petr Tomek ◽  
Yohanes N.S. Nursalim ◽  
Lawrence W. Chamley ◽  
Euphemia Leung

Extracellular vesicles (EVs) are emerging as key players in breast cancer progression and hold immense promise as cancer biomarkers. However, difficulties in obtaining sufficient quantities of EVs for the identification of potential biomarkers hampers progress in this area. To circumvent this obstacle, we cultured BT-474 breast cancer cells in a two-chambered bioreactor with CDM-HD serum replacement to significantly improve the yield of cancer cell-associated EVs and eliminate bovine EV contamination. Cancer-relevant mRNAs BIRC5 (Survivin) and YBX1, as well as long-noncoding RNAs HOTAIR, ZFAS1, and AGAP2-AS1 were detected in BT-474 EVs by quantitative RT-PCR. Bioinformatics meta-analyses showed that BIRC5 and HOTAIR RNAs were substantially upregulated in breast tumours compared to non-tumour breast tissue, warranting further studies to explore their usefulness as biomarkers in patient EV samples. We envision this effective procedure for obtaining large amounts of cancer-specific EVs will accelerate discovery of EV-associated RNA biomarkers for cancers including HER2+ breast cancer.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 150 ◽  
Author(s):  
Patricia M. M. Ozawa ◽  
Evelyn Vieira ◽  
Débora S. Lemos ◽  
Ingrid L. Melo Souza ◽  
Silvio M. Zanata ◽  
...  

MicroRNAs derived from extracellular vesicles (EV-miRNAs) are circulating miRNAs considered as potential new diagnostic markers for cancer that can be easily detected in liquid biopsies. In this study, we performed RNA sequencing analysis as a screening strategy to identify EV-miRNAs derived from serum of clinically well-annotated breast cancer (BC) patients from the south of Brazil. EVs from three groups of samples (healthy controls (CT), luminal A (LA), and triple-negative (TNBC)) were isolated from serum using a precipitation method and analyzed by RNA-seq (screening phase). Subsequently, four EV-miRNAs (miR-142-5p, miR-150-5p, miR-320a, and miR-4433b-5p) were selected to be quantified by quantitative real-time PCR (RT-qPCR) in individual samples (test phase). A panel composed of miR-142-5p, miR-320a, and miR-4433b-5p distinguished BC patients from CT with an area under the curve (AUC) of 0.8387 (93.33% sensitivity, 68.75% specificity). The combination of miR-142-5p and miR-320a distinguished LA patients from CT with an AUC of 0.9410 (100% sensitivity, 93.80% specificity). Interestingly, decreased expression of miR-142-5p and miR-150-5p were significantly associated with more advanced tumor grades (grade III), while the decreased expression of miR-142-5p and miR-320a was associated with a larger tumor size. These results provide insights into the potential application of EVs-miRNAs from serum as novel specific markers for early diagnosis of BC.


2020 ◽  
Author(s):  
Colin L. Hisey ◽  
Petr Tomek ◽  
Yohanes N.S. Nursalim ◽  
Lawrence W. Chamley ◽  
Euphemia Leung

AbstractExtracellular vesicles (EVs) are emerging as key players in breast cancer progression and hold immense promise as cancer biomarkers. However, difficulties in obtaining sufficient quantities of EVs for the identification of potential biomarkers hampers progress in this area. To circumvent this obstacle, we cultured BT-474 breast cancer cells in a two chambered bioreactor with CDM-HD serum replacement to significantly improve the yield of cancer cell-associated EVs and eliminate bovine EV contamination. Cancer-relevant mRNAs BIRC5 (Survivin) and YBX1 as well as long-noncoding RNAs HOTAIR, ZFAS1, and AGAP2-AS1 were detected in BT-474 EVs by quantitative RT-PCR. Bioinformatics meta-analyses showed that BIRC5 and HOTAIR RNAs were substantially upregulated compared to non-tumour breast tissue, encouraging further studies to explore their usefulness as biomarkers in patient EV samples. We contend that this effective procedure for obtaining large amounts of cancer-specific EVs will accelerate discovery of EV-associated RNA biomarkers for detection of HER2+ breast cancer.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Michelle M. Martinez‐Montemayor ◽  
Robert J. Schneider ◽  
Chunling Zhang ◽  
Jorge Andrade ◽  
Ivette J. Suarez‐Arroyo

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Gabriela Ortiz-Soto ◽  
Ivette J. Suárez-Arroyo ◽  
Michelle M. Martínez-Montemayor

2016 ◽  
Vol 7 (5) ◽  
pp. 500-511 ◽  
Author(s):  
Ivette J. Suárez-Arroyo ◽  
Tiffany J. Rios-Fuller ◽  
Yismeilin R. Feliz-Mosquea ◽  
Mercedes Lacourt-Ventura ◽  
Daniel J. Leal-Alviarez ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1164
Author(s):  
Flavia Lima Costa Faldoni ◽  
Cláudia Aparecida Rainho ◽  
Silvia Regina Rogatto

Evidence has emerged implicating epigenetic alterations in inflammatory breast cancer (IBC) origin and progression. IBC is a rare and rapidly progressing disease, considered the most aggressive type of breast cancer (BC). At clinical presentation, IBC is characterized by diffuse erythema, skin ridging, dermal lymphatic invasion, and peau d’orange aspect. The widespread distribution of the tumor as emboli throughout the breast and intra- and intertumor heterogeneity is associated with its poor prognosis. In this review, we highlighted studies documenting the essential roles of epigenetic mechanisms in remodeling chromatin and modulating gene expression during mammary gland differentiation and the development of IBC. Compiling evidence has emerged implicating epigenetic changes as a common denominator linking the main risk factors (socioeconomic status, environmental exposure to endocrine disruptors, racial disparities, and obesity) with IBC development. DNA methylation changes and their impact on the diagnosis, prognosis, and treatment of IBC are also described. Recent studies are focusing on the use of histone deacetylase inhibitors as promising epigenetic drugs for treating IBC. All efforts must be undertaken to unravel the epigenetic marks that drive this disease and how this knowledge could impact strategies to reduce the risk of IBC development and progression.


Sign in / Sign up

Export Citation Format

Share Document