scholarly journals Understanding the critical rate of environmental change for ecosystems, cyanobacteria as an example

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253003
Author(s):  
Bregje van der Bolt ◽  
Egbert H. van Nes

Recently it has been show that in some ecosystems fast rates of change of environmental drivers may trigger a critical transition, whereas change of the same magnitude but at slower rates would not. So far, few studies describe this phenomenon of rate-induced tipping, while it is important to understand this phenomenon in the light of the ongoing rapid environmental change. Here, we demonstrate rate-induced tipping in a simple model of cyanobacteria with realistic parameter settings. We explain graphically that there is a range of initial conditions at which a gradual increase in environmental conditions can cause a collapse of the population, but only if the change is fast enough. In addition, we show that a pulse in the environmental conditions can cause a temporary collapse, but that is dependent on both the rate and the duration of the pulse. Furthermore, we study whether the autocorrelation of stochastic environmental conditions can influence the probability of inducing rate-tipping. As both the rate of environmental change, and autocorrelation of the environmental variability are increasing in parts of the climate, the probability for rate-induced tipping to occur is likely to increase. Our results imply that, even though the identification of rate sensitive ecosystems in the real world will be challenging, we should incorporate critical rates of change in our ecosystem assessments and management.

Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Elena Romano ◽  
Luisa Bergamin ◽  
Mario Parise

Marine caves are characterized by wide environmental variability for the interaction between marine and continental processes. Their conditions may be defined as extreme for inhabiting organisms due to the enclosed morphology, lack of light, and scarcity of nutrients. Therefore, it is necessary to identify reliable ecological indicators for describing and assessing environmental conditions in these habitats even more than elsewhere. This review aims to provide the state of art related to the application of benthic foraminifera as proxies in the (paleo)ecological characterization of different habitats of marine caves. Special attention was addressed to a research project focused on Mediterranean marine caves with different characteristics, such as extent, morphology, freshwater influence, salinity, sediment type, oxygenation, and organic matter supply. This review aims to illustrate the reliability of foraminifera as an ecological and paleoecological indicator in these habitats. They respond to various environmental conditions with different assemblages corresponding to a very detailed habitat partitioning. Because marine caves may be considered natural laboratories for environmental variability, the results of these studies may be interpreted in the perspective of the global variability to understand the environmental drivers of future changes in marine systems.


2021 ◽  
Vol 224 (18) ◽  
Author(s):  
Jocelyn P. Colella ◽  
Danielle M. Blumstein ◽  
Matthew D. MacManes

ABSTRACT Metabolism is a complex phenotype shaped by natural environmental rhythms, as well as behavioral, morphological and physiological adaptations. Metabolism has been historically studied under constant environmental conditions, but new methods of continuous metabolic phenotyping now offer a window into organismal responses to dynamic environments, and enable identification of abiotic controls and the timing of physiological responses relative to environmental change. We used indirect calorimetry to characterize metabolic phenotypes of the desert-adapted cactus mouse (Peromyscus eremicus) in response to variable environmental conditions that mimic their native environment versus those recorded under constant warm and constant cool conditions, with a constant photoperiod and full access to resources. We found significant sexual dimorphism, with males being more prone to dehydration than females. Under circadian environmental variation, most metabolic shifts occurred prior to physical environmental change and the timing was disrupted under both constant treatments. The ratio of CO2 produced to O2 consumed (the respiratory quotient) reached greater than 1.0 only during the light phase under diurnally variable conditions, a pattern that strongly suggests that lipogenesis contributes to the production of energy and endogenous water. Our results are consistent with historical descriptions of circadian torpor in this species (torpid by day, active by night), but reject the hypothesis that torpor is initiated by food restriction or negative water balance.


2019 ◽  
Vol 374 (1768) ◽  
pp. 20180174 ◽  
Author(s):  
Rebecca J. Fox ◽  
Jennifer M. Donelson ◽  
Celia Schunter ◽  
Timothy Ravasi ◽  
Juan D. Gaitán-Espitia

How populations and species respond to modified environmental conditions is critical to their persistence both now and into the future, particularly given the increasing pace of environmental change. The process of adaptation to novel environmental conditions can occur via two mechanisms: (1) the expression of phenotypic plasticity (the ability of one genotype to express varying phenotypes when exposed to different environmental conditions), and (2) evolution via selection for particular phenotypes, resulting in the modification of genetic variation in the population. Plasticity, because it acts at the level of the individual, is often hailed as a rapid-response mechanism that will enable organisms to adapt and survive in our rapidly changing world. But plasticity can also retard adaptation by shifting the distribution of phenotypes in the population, shielding it from natural selection. In addition to which, not all plastic responses are adaptive—now well-documented in cases of ecological traps. In this theme issue, we aim to present a considered view of plasticity and the role it could play in facilitating or hindering adaption to environmental change. This introduction provides a re-examination of our current understanding of the role of phenotypic plasticity in adaptation and sets the theme issue's contributions in their broader context. Four key themes emerge: the need to measure plasticity across both space and time; the importance of the past in predicting the future; the importance of the link between plasticity and sexual selection; and the need to understand more about the nature of selection on plasticity itself. We conclude by advocating the need for cross-disciplinary collaborations to settle the question of whether plasticity will promote or retard species' rates of adaptation to ever-more stressful environmental conditions. This article is part of the theme issue ‘The role of plasticity in phenotypic adaptation to rapid environmental change’.


2016 ◽  
Vol 52 (7) ◽  
pp. 965-981 ◽  
Author(s):  
Carmi Schooler ◽  
Leslie J Caplan ◽  
Pakuy Pierre Mounkoro ◽  
Chiaka Diakité

We examine the effects of socio-environmental change on personality in Mali in three ways, using data from a longitudinal two-wave (1994, 2004) survey conducted in rural Mali. Firstly, we compare the between-wave personality stability of Anxiety, Self-confidence, Mastery/Fatalism, and Authoritarianism with that in USA, Japan, Poland, and Ukraine. Secondly, we examine socio-economic hardship and political instability in pre-industrial Mali. Thirdly, we examine patterns of psychological reaction to political and social change during the study period. Our findings have implications for comparisons and generalizations across times and cultures about the contribution of socio-environmental conditions to over-time change in personality.


2013 ◽  
Vol 36 (5) ◽  
pp. 485-486 ◽  
Author(s):  
Lei Chang ◽  
Bin-Bin Chen ◽  
Hui Jing Lu

AbstractThe target article provides an intermediate account of culture and freedom that is conceived to be curvilinear by treating economic development not as an adaptive outcome in response to climate but as a cause of culture parallel to climate. We argue that the extent of environmental variability, including climatic variability, affects cultural adaptation.


2011 ◽  
Vol 8 (12) ◽  
pp. 3661-3675 ◽  
Author(s):  
M. I. Stutter ◽  
D. G. Lumsdon ◽  
A. P. Rowland

Abstract. Moorland carbon reserves in organo-mineral soils may be crucial to predicting landscape-scale variability in soil carbon losses, an important component of which is dissolved organic carbon (DOC). Surface water DOC trends are subject to a range of scaling, transport and biotic processes that disconnect them from signals in the catchment's soils. Long-term soil datasets are vital to identify changes in DOC release at source and soil C depletion. Here we show, that moorland soil solution DOC concentrations at three key UK Environmental Change Network sites increased between 1993–2007 in both surface- and sub- soil of a freely-draining Podzol (48 % and 215 % increases in O and Bs horizons, respectively), declined in a gleyed Podzol and showed no change in a Peat. Our principal findings were that: (1) considerable heterogeneity in DOC response appears to exist between different soils that is not apparent from the more consistent observed trends for streamwaters, and (2) freely-draining organo-mineral Podzol showed increasing DOC concentrations, countering the current scientific focus on soil C destabilization in peats. We discuss how the key solubility controls on DOC associated with coupled physico-chemical factors of ionic strength, acid deposition recovery, soil hydrology and temperature cannot readily be separated. Yet, despite evidence that all sites are recovering from acidification the soil-specific responses to environmental change have caused divergence in soil DOC concentration trends. The study shows that the properties of soils govern their specific response to an approximately common set of broad environmental drivers. Key soil properties are indicated to be drainage, sulphate and DOC sorption capacity. Soil properties need representation in process-models to understand and predict the role of soils in catchment to global C budgets. Catchment hydrological (i.e. transport) controls may, at present, be governing the more ubiquitous rises in river DOC concentration trends, but soil (i.e. source) controls provide the key to prediction of future C loss to waters and the atmosphere.


2020 ◽  
Author(s):  
Kiva L. Oken ◽  
André E Punt ◽  
Daniel S. Holland

Natural resources often exhibit large interannual fluctuations in productivity driven by shifting environmental conditions, and this translates to high variability in the revenue resource users can earn. However, users can dampen this variability by harvesting a portfolio of resources. In the context of fisheries, this means targeting multiple populations, though the ability to actually build diverse fishing portfolios is often constrained by the costs and availability of fishing permits. These constraints are generally intended to prevent overcapitalization of the fleet and ensure populations are fished sustainably. As linked human-natural systems, both ecological and fishing dynamics influence the specific advantages and disadvantages of increasing the diversity of fishing portfolios. Specifically, a portfolio of synchronous populations with similar responses to environmental drivers should reduce revenue variability less than a portfolio of asynchronous populations with opposite responses. We built a bioeconomic model characterized by the Dungeness crab (Metacarcinus magister), Chinook salmon (Oncorhynchus tshawytscha), and groundfish fisheries in the California Current, and used it to explore the influence of population synchrony and permit access on revenue patterns. As expected, synchronous populations reduced revenue variability less than asynchronous populations, but only for portfolios including crab and salmon. Synchrony with longer-lived groundfish populations was not important because environmentally-driven changes in groundfish early life survival were mediated by growth and natural mortality over the full population age structure, and overall biomass was relatively stable across years. Thus, building a portfolio of diverse life histories can buffer against the impacts of extremely poor environmental conditions over short time scales, though not for long-term declines. Increasing access to all permits generally led to increased revenue stability and decreased inequality of the fleet, but also resulted in less revenue earned by an individual from a given portfolio because more vessels shared the available biomass. This means managers are faced with a tradeoff between the average revenue individuals earn and the risk those individuals accept. These results illustrate the importance of considering connections between social and ecological dynamics when evaluating management options that constrain or facilitate fishers’ ability to diversify their fishing.


Sign in / Sign up

Export Citation Format

Share Document