scholarly journals The radioenhancement potential of Schiff base derived copper (II) compounds against lung carcinoma in vitro

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253553
Author(s):  
Gohar Tsakanova ◽  
Ani Stepanyan ◽  
Elina Arakelova ◽  
Violetta Ayvazyan ◽  
Vahan Tonoyan ◽  
...  

For the last years, copper complexes have been intensively implicated in biomedical research as components of cancer treatment. Herewith, we provide highlights of the synthesis, physical measurements, structural characterization of the newly developed Cu(II) chelates of Schiff Bases, Cu(Picolinyl-L-Tryptopahanate)2, Cu(Picolinyl-L-Tyrosinate)2, Cu(Isonicotinyl-L-Tyrosinate)2, Cu(Picolinyl-L-Phenylalaninate)2, Cu(Nicotinyl-L-Phenylalaninate)2, Cu(Isonicotinyl-L-Phenylalaninate)2, and their radioenhancement capacity at kV and MV ranges of irradiation of human lung carcinoma epithelial cells in vitro. The methods of cell growth, viability and proliferation were used. All compounds exerted very potent radioenhancer capacities in the irradiated lung carcinoma cells at both kV and MV ranges in a 100 μM concentration. At a concentration of 10 μM, only Cu(Picolinyl-L-Tyrosinate)2, Cu(Isonicotinyl-L-Tyrosinate)2, Cu(Picolinyl-L-Phenylalaninate)2 possessed radioenhancer properties at kV and MV ranges. Cu(Picolinyl-L-Tryptophanate)2 showed radioenhancer properties only at kV range. Cu(Nicotinyl-L-Phenylalaninate)2 and Cu(Isonicotinyl-L-Phenylalaninate)2 showed remarkable radioenhancer activity only at MV range. All compounds acted in dose-dependent manner at both tested energy ranges. These copper (II) compounds, in combination with 1 Gy irradiation at either 120 kV or 6 MV, are more efficient at delaying cell growth of lung cancer cells and at reducing cell viability in vitro than the irradiation administered alone. Thus, we have demonstrated that the studied copper compounds have a good potential for radioenhancement.

2004 ◽  
Vol 279 (19) ◽  
pp. 20267-20276 ◽  
Author(s):  
Jui-I Chao ◽  
Pao-Chen Kuo ◽  
Tzu-Sheng Hsu

Survivin is expressed in most tumor cells and has been associated with both anti-apoptosis and mitotic progression. However, the mechanism of regulation of the survivin expression remains unclear. In this study we investigated the expression and regulation of survivin in the nitric oxide (NO)-exposed human lung carcinoma cells. The lung carcinoma cell lines CL3, H1299, and A549 but not normal lung fibroblast expressed high levels of survivin proteins. NO donorsS-nitroso-N-acetyl-penicillamine (SNAP) and sodium nitroprusside (SNP) decreased the survivin expression. SNAP (0.4 mm, 24h)and SNP (1 mm, 24 h) significantly induced cytotoxicity and apoptosis in lung carcinoma cells. Furthermore, SNAP inhibited the cell growth and increased the fractions of G2/M phase. The levels of cyclin B1 and phospho-cdc2-(Thr-161) proteins were inhibited in the NO-exposed cells. The cdc25 phosphatase inhibitors (Cpd 5 and NSC 663284) and the cdc2 kinase inhibitors (alsterpaullone and purvalanol A) enhanced SNP-induced cytotoxicity and the decrease in survivin expression. However, overexpression of survivin by a pOTB7-survivin vector reduced SNP-induced cell growth inhibition and cytotoxicity. In addition, SNP activated the phosphorylation of p38 mitogen-activated protein (MAP) kinase. The specific p38 MAP kinase inhibitor, SB202190, significantly decreased the cytotoxicity and increased the survivin levels in NO donor-treated and inducible NOS-transfected cells. Conversely, anticancer agents including quercetin, arsenite, and cisplatin but not genistein increased the levels of survivin protein. Our results indicated for the first time that NO inhibited the expression of survivin, which was down-regulated by the p38 MAP kinase pathway.


2011 ◽  
Vol 31 (8) ◽  
pp. 1723-1728 ◽  
Author(s):  
Mayur Valodkar ◽  
Ravirajsinh N. Jadeja ◽  
Menaka C. Thounaojam ◽  
Ranjitsinh V. Devkar ◽  
Sonal Thakore

2010 ◽  
Vol 33 (7) ◽  
pp. 1183-1191 ◽  
Author(s):  
Yoshiyuki Shishido ◽  
Tomio Furuta ◽  
Takeshi Matsuzaki ◽  
Hiroshi Nagata ◽  
Shusuke Hashimoto

2018 ◽  
Vol 18 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Aikebaier Maimaiti ◽  
Amier Aili ◽  
Hureshitanmu Kuerban ◽  
Xuejun Li

Aims: Gallic acid (GA) is generally distributed in a variety of plants and foods, and possesses cell growth-inhibiting activities in cancer cell lines. In the present study, the impact of GA on cell viability, apoptosis induction and possible molecular mechanisms in cultured A549 lung carcinoma cells was investigated. Methods: In vitro experiments showed that treating A549 cells with various concentrations of GA inhibited cell viability and induced apoptosis in a dose-dependent manner. In order to understand the mechanism by which GA inhibits cell viability, comparative proteomic analysis was applied. The changed proteins were identified by Western blot and siRNA methods. Results: Two-dimensional electrophoresis revealed changes that occurred to the cells when treated with or without GA. Four up-regulated protein spots were clearly identified as malate dehydrogenase (MDH), voltagedependent, anion-selective channel protein 1(VDAC1), calreticulin (CRT) and brain acid soluble protein 1(BASP1). VDAC1 in A549 cells was reconfirmed by western blot. Transfection with VDAC1 siRNA significantly increased cell viability after the treatment of GA. Further investigation showed that GA down regulated PI3K/Akt signaling pathways. These data strongly suggest that up-regulation of VDAC1 by GA may play an important role in GA-induced, inhibitory effects on A549 cell viability.


Sign in / Sign up

Export Citation Format

Share Document