scholarly journals The effects of mycorrhizal colonization on phytophagous insects and their natural enemies in soybean fields

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257712
Author(s):  
Élisée Emmanuel Dabré ◽  
Soon-Jae Lee ◽  
Mohamed Hijri ◽  
Colin Favret

The use of belowground microorganisms in agriculture, with the aim to stimulate plant growth and improve crop yields, has recently gained interest. However, few studies have examined the effects of microorganism inoculation on higher trophic levels in natural conditions. We examined how the diversity of phytophagous insects and their natural enemies responded to the field-inoculation of soybean with a model arbuscular mycorrhizal fungus (AMF), Rhizophagus irregularis, combined with a nitrogen-fixing bacterium, Bradyrhizobium japonicum, and a plant growth-promoting bacterium, Bacillus pumilus. We also investigate if the absence or presence of potassium fertilizer can affect this interaction. We found an increase in the abundance of piercing-sucking insects with the triple inoculant irrespective of potassium treatment, whereas there were no differences among treatments for other insect groups. A decrease in the abundance of the soybean aphid, Aphis glycines, with the double inoculant Rhizophagus + Bradyrhizobium was observed in potassium enriched plots and in the abundance of Empoasca spp. with potassium treatment independent of inoculation type. Although it was not possible to discriminate the mycorrhization realized by inoculum from that of the indigenous AMF in the field, we confirmed global negative effects of overall mycorrhizal colonization on the abundance of phytophagous piercing-sucking insects, phytophagous chewing insects, and the alpha diversity of phytophagous insects. In perspective, the use of AMF/Rhizobacteria inoculants in the field should focus on the identity and performance of strains to better understand their impact on insects.

1986 ◽  
Vol 4 (4) ◽  
pp. 109-111
Author(s):  
Lee R. Barnes ◽  
Charles R. Johnson

Rooted microcuttings of Chapman's rhododendron (Rhododendron chapmanii Gray) were transplanted into MetroMix-500 (M500) and fired montmorillonite clay: Canadian peat [(2FMC: 1CP) by vol] and half the plantlets were inoculated with the ericoid mycorrhizal fungus, Pezizella ericae Read. Plantlet survival was improved with mycorrhizal colonization after 16 weeks in 2FMC: 1CP medium, but no differences were observed for plants grown in the M500 medium. Plant growth parameters after 16 weeks were greater for all plants grown in the M500 medium and there were no beneficial mycorrhizal growth responses in either media. Mycorrhizal colonization appeared to be of no benefit to growth of rooted R. chapmanii microcuttings except improved survival in high pH 2FMC:1CP medium.


2020 ◽  
Author(s):  
Luke Elissiry ◽  
Jingwen Sun ◽  
Ann M. Hirsch ◽  
Chong Liu

Synthetic fertilizer is responsible for the greatly increased crop yields that have enabled worldwide industrialization. However, the production and use of such fertilizers are environmentally unfriendly and unsustainable; synthetic fertilizers are produced via non-renewable resources and fertilizer runoff causes groundwater contamination and eutrophication. A promising alternative to synthetic fertilizer is bacterial inoculation. In this process, a symbiotic relationship is formed between a crop and bacteria species that can fix nitrogen, solubilize phosphorus, and stimulate plant hormone production. The bacteria carrier developed here aims to maintain bacteria viability while in storage, protect bacteria while encapsulated, and provide a sustained and controllable bacterial release. This novel bacterial delivery method utilizes inorganic nanomaterials, silica microbeads, to encapsulate symbiotic bacteria. These microbeads, which were produced with aqueous, non-toxic precursors, are sprayed directly onto crop seeds and solidify on the seeds as a resilient silica matrix. The bacterial release from the carrier was found by submerging coated seeds in solution to simulate degradation in soil environments, measuring the number of bacteria released by the plate count technique, and comparing the carrier to seeds coated only in bacteria. The carrier’s effectiveness to enhance plant growth was determined through greenhouse plant assays with alfalfa (<i>Medicago sativa</i>) plants and the nitrogen-fixing <i>Sinorhizobium meliloti</i> Rm1021 strain. When compared to bacteria-only inoculation, the silica microbead carrier exhibited significantly (P < 0.05) increased holding capacity of viable bacteria and increased plant growth by a similar amount, demonstrating the capability of inorganic nanomaterials for microbial delivery. The carrier presented in this work has potential applications for commercial agriculture and presents an opportunity to further pursue more sustainable agricultural practices.


2020 ◽  
Author(s):  
Luke Elissiry ◽  
Jingwen Sun ◽  
Ann M. Hirsch ◽  
Chong Liu

Synthetic fertilizer is responsible for the greatly increased crop yields that have enabled worldwide industrialization. However, the production and use of such fertilizers are environmentally unfriendly and unsustainable; synthetic fertilizers are produced via non-renewable resources and fertilizer runoff causes groundwater contamination and eutrophication. A promising alternative to synthetic fertilizer is bacterial inoculation. In this process, a symbiotic relationship is formed between a crop and bacteria species that can fix nitrogen, solubilize phosphorus, and stimulate plant hormone production. The bacteria carrier developed here aims to maintain bacteria viability while in storage, protect bacteria while encapsulated, and provide a sustained and controllable bacterial release. This novel bacterial delivery method utilizes inorganic nanomaterials, silica microbeads, to encapsulate symbiotic bacteria. These microbeads, which were produced with aqueous, non-toxic precursors, are sprayed directly onto crop seeds and solidify on the seeds as a resilient silica matrix. The bacterial release from the carrier was found by submerging coated seeds in solution to simulate degradation in soil environments, measuring the number of bacteria released by the plate count technique, and comparing the carrier to seeds coated only in bacteria. The carrier’s effectiveness to enhance plant growth was determined through greenhouse plant assays with alfalfa (<i>Medicago sativa</i>) plants and the nitrogen-fixing <i>Sinorhizobium meliloti</i> Rm1021 strain. When compared to bacteria-only inoculation, the silica microbead carrier exhibited significantly (P < 0.05) increased holding capacity of viable bacteria and increased plant growth by a similar amount, demonstrating the capability of inorganic nanomaterials for microbial delivery. The carrier presented in this work has potential applications for commercial agriculture and presents an opportunity to further pursue more sustainable agricultural practices.


2020 ◽  
Vol 52 (4) ◽  
Author(s):  
Muhammad Zafar-Ul-Hye ◽  
Fiza Mahmood ◽  
Subhan Danish ◽  
Shahid Hussain ◽  
Mehreen Gul ◽  
...  

2016 ◽  
Vol 51 (8) ◽  
pp. 942-949 ◽  
Author(s):  
Gilberto Nava ◽  
Karine Louise dos Santos ◽  
Murilo Dalla Costa ◽  
Marlise Nara Ciotta

Abstract: The objective of this work was to investigate the effect of liming and phosphorus fertilization on the growth, mineral composition of the leaves, fruit yield, and mycorrhizal colonization of young feijoa (Acca sellowiana) plants. Treatments consisted of four liming levels - 0, 25, 50, and 100% of the dose required to raise the soil pH to 6.5 - and of five levels of P - 0, 60, 120, 180, and 240 kg ha-1 P2O5 -, placed in a randomized complete block design, in a split-plot arrangement, with three replicates. The orchard was established in 2010 with the Helena cultivar. In 2012, 2013, and 2014, plant growth was evaluated by measuring trunk perimeter, plant height, and tree canopy width. Mineral composition of the leaves, regarding P, N, K, Ca, and Mg contents, was assessed annually. Mycorrhizal colonization was evaluated in 2012, and fruit yield was determined in 2014. No interaction was observed between the studied factors. P contents had no effect on the evaluated variables. Liming, however, increases plant growth, mycorrhizal colonization, fruit yield, and Ca and Mg leaf contents, besides reducing K leaf contents.


2018 ◽  
Vol 12 (05) ◽  
pp. 704-710 ◽  
Author(s):  
Laíze Aparecida Ferreira Vilela ◽  
◽  
Sílvio Junio Ramos ◽  
Marco Aurélio Carbone Carneiro ◽  
Valdemar Faquin ◽  
...  

2018 ◽  
Vol 10 (9) ◽  
pp. 3286 ◽  
Author(s):  
Cristian Dal Cortivo ◽  
Giuseppe Barion ◽  
Manuel Ferrari ◽  
Giovanna Visioli ◽  
Lucia Dramis ◽  
...  

This study investigated the effects of a commercial biofertilizer containing the mycorrhizal fungus Rhizophagus irregularis and the diazotrophic N-fixing bacterium Azotobacter vinelandii on root and shoot growth, yield, and nutrient uptake in common wheat (Triticum aestivum L.) in order to improve the sustainable cultivation of this widespread crop. The trials were carried out in controlled conditions (rhizoboxes) and in open fields over two years to investigate the interaction between inoculation and three doses of nitrogen fertilization (160, 120 and 80 kg ha−1) in a silty-loam soil of the Po Plain (NE Italy). In rhizoboxes, efficient root colonization by R. irregularis was observed at 50 days after sowing with seed inoculation, together with improved root tip density and branching (+~30% vs. controls), while the effects of post-emergence inoculation by soil and foliar spraying were not observable at plant sampling. In the open, field spraying at end tillering significantly increased the volumetric root length density (RLD, +22% vs. controls) and root area density (+18%) after about two months (flowering stage) in both years under medium and high N fertilization doses, but not at the lowest N dose. In absence of inoculation, RLD progressively decreased with increased N doses. Inoculation had a negligible effect on grain yield and N uptake, which followed a typical N dose-response model, while straw Zn, P, and K concentrations were seldom improved. It is concluded that medium-high N fertilization doses are required to achieve the target yield and standards of quality (protein contents) in wheat cultivation, while the use of this mixed VAM-PGPR biofertilizer appears to be a sustainable mean for minimizing the adverse effects of chemical N fertilizers on root expansion and for improving the uptake of low-mobility nutrients, which has potentially relevant environmental benefits.


1980 ◽  
Vol 58 (20) ◽  
pp. 2200-2205 ◽  
Author(s):  
S. Asimi ◽  
V. Gianinazzi-Pearson ◽  
S. Gianinazzi

Growth and yield increases, obtained in nodulated soybeans growing in unamended sterile soil by inoculation with the vesicular–arbuscular (VA) mycorrhizal fungus Glomus mosseae, were accompanied by improved P uptake, lower root to shoot ratios, better nodulation with higher nitrogenase activity, and modifications in the pattern of the latter during plant growth. Stimulation of nitrogenase activity occurred early in plant development and preceded plant growth responses by about 2 weeks. Phosphate fertilization increased yield, percent P but not percent N of both mycorrhizal and nonmycorrhizal soybeans, and also modified the pattern and amount of nitrogenase activity during plant growth. Additions of 0.25 g KH2PO4/kg to the soil eliminated the mycorrhizal effect on plant growth, but nodule formation and nitrogenase activity were still significantly stimulated by the mycorrhizal infection. Mycorrhizal effects on nodulation were eliminated with 0.5 g KH2PO4 and on nitrogenase activity with the addition of 1.0 g KH2PO4. These higher levels of phosphate fertilization considerably diminished infection and, in particular, fungal spread within the roots.


Sign in / Sign up

Export Citation Format

Share Document