scholarly journals Group theoretical analysis for unsteady magnetohydrodynamics flow and radiative heat transfer of power-law nanofluid subject to Navier’s slip conditions

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258107
Author(s):  
Saba Javaid ◽  
Asim Aziz ◽  
Taha Aziz

The present work covers the flow and heat transfer model for the Power-law nanofluid in the presence of a porous medium over a penetrable plate. The flow is caused by the impulsive movement of the plate embedded in Darcy’s porous medium. The flow and heat transfer models are examined with the effect of linear thermal radiation in the flow regime. The Rosseland approximation is utilized for the optically thick nanofluid. The governing partial differential equations are solved using Lie symmetry analysis to find the reductions and invariants for the closed-form solutions. These invariants are then utilized to obtain the exact solutions for the shear-thinning, Newtonian, and shear-thickening nanofluids. In the end, all solutions are plotted for the Cu-water nanofluid to observe the effect of different emerging flow and heat transfer parameters.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Saba Javaid ◽  
Asim Aziz

The present work covers the flow and heat transfer model for the power-law nanofluid in the presence of a porous medium over the penetrable plate. The flow is caused by the impulsive movement of the plate embedded in Darcy’s type porous medium. The flow and heat transfer model has been examined with the effect of linear thermal radiation and the internal heat source or sink in the flow regime. The Rosseland approximation is utilized for the optically thick nanofluid. To form the closed-form solutions for the governing partial differential equations of conservation of mass, momentum, and energy, the Lie symmetry analysis is used to get the reductions of governing equations and to find the group invariants. These invariants are then utilized to obtain the exact solution for all three cases, i.e., shear thinning fluid, Newtonian fluid, and shear thickening fluid. In the end, all solutions are plotted for the cu -water nanofluid and discussed briefly for the different emerging flow and heat transfer parameters.


Author(s):  
G. M. Zhu ◽  
W. Liu ◽  
T. Zeng ◽  
K. Yang

A human being’s limb can be modeled in terms of three physiological layers from inside to outside in the radial direction: the bone, the muscle and the skin as shown in Fig. 1. The skin layer could be regarded as a kind of porous tissue at macro-scale, though it is not a perfect porous material. This is because the skin layer has all the important physical characteristics of a porous medium: the solid matrix, skin tissue covering all the objective space; and the voids/pores formed by sweat glands that are interconnected. This allows one to use the model for an unsaturated porous medium to describe the flow and heat transfer of sweat in the skin layer.


Author(s):  
Kasra Ayoubi Ayoubloo ◽  
Mohammad Ghalambaz ◽  
Taher Armaghani ◽  
Aminreza Noghrehabadi ◽  
Ali J. Chamkha

Purpose This paper aims to theoritically investigate the free convection flow and heat transfer of a non-Newtonian fluid with pseudoplastic behavior in a cylindrical vertical cavity partially filled with a layer of a porous medium. Design/methodology/approach The non-Newtonian behavior of the pseudoplastic liquid is described by using a power-law non-Newtonian model. There is a temperature difference between the internal and external cylinders. The porous layer is attached to the internal cylinder and has a thickness of D. Upper and lower walls of the cavity are well insulated. The governing equations are transformed into a non-dimensional form to generalize the solution. The finite element method is used to solve the governing equations numerically. The results are compared with the literature results in several cases and found in good agreement. Findings The influence of the thickness of the porous layer, Rayleigh number and non-Newtonian index on the heat transfer behavior of a non-Newtonian pseudoplastic fluid is addressed. The increase of pseudoplastic behavior and increase of the thickness of the porous layer enhances the heat transfer. By increase of the porous layer from 0.6 to 0.8, the average Nusselt number increased from 0.15 to 0.25. The increase of non-Newtonian effects (decrease of the non-Newtonian power-law index) enhances the heat transfer rate. Originality/value The free convection behavior of a pseudoplastic-non-Newtonian fluid in a cylindrical enclosure partially filled by a layer of a porous medium is addressed for the first time.


Sign in / Sign up

Export Citation Format

Share Document