scholarly journals Treatment of necrotizing enterocolitis by conditioned medium derived from human amniotic fluid stem cells

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260522
Author(s):  
Joshua S. O’Connell ◽  
Bo Li ◽  
Andrea Zito ◽  
Abdalla Ahmed ◽  
Marissa Cadete ◽  
...  

Purpose Necrotizing enterocolitis (NEC) is one of the most distressing gastrointestinal emergencies affecting neonates. Amniotic fluid stem cells (AFSC) improve intestinal injury and survival in experimental NEC but are difficult to administer. In this study, we evaluated whether conditioned medium (CM) derived from human AFSC have protective effects. Methods Three groups of C57BL/6 mice were studied: (i) breast-fed mice as control; (ii) experimental NEC mice receiving PBS; and (iii) experimental NEC mice receiving CM. NEC was induced between post-natal days P5 through P9 via: (A) gavage feeding of hyperosmolar formula four-time a day; (B) 10 minutes hypoxia prior to feeds; and (C) lipopolysaccharide administration on P6 and P7. Intra-peritoneal injections of either PBS or CM were given on P6 and P7. All mice were sacrificed on P9 and terminal ileum were harvested for analyses. Results CM treatment increased survival and reduced intestinal damage, decreased mucosal inflammation (IL-6; TNF-α), neutrophil infiltration (MPO), and apoptosis (CC3), and also restored angiogenesis (VEGF) in the ileum. Additionally, CM treated mice had increased levels of epithelial proliferation (Ki67) and stem cell activity (Olfm4; Lgr5) compared to NEC+PBS mice, showing restored intestinal regeneration and recovery during NEC induction. CM proteomic analysis of CM content identified peptides that regulated immune and stem cell activity. Conclusions CM derived from human AFSC administered in experimental NEC exhibited various benefits including reduced intestinal injury and inflammation, increased enterocyte proliferation, and restored intestinal stem cell activity. This study provides the scientific basis for the use of CM derived from AFSC in neonates with NEC.

Cell Reports ◽  
2016 ◽  
Vol 17 (10) ◽  
pp. 2789-2804 ◽  
Author(s):  
Yukiko Ishikura ◽  
Yukihiro Yabuta ◽  
Hiroshi Ohta ◽  
Katsuhiko Hayashi ◽  
Tomonori Nakamura ◽  
...  

2011 ◽  
Vol 23 (1) ◽  
pp. 243 ◽  
Author(s):  
S.-A. Choi ◽  
J.-H. Lee ◽  
K.-J. Kim ◽  
E.-Y. Kim ◽  
K.-S. Park ◽  
...  

Adult stem cells have the capacity to differentiate into several different cell types, although their differentiation potential is limited compared with that of embryonic stem cells. Thus, adult stem cells are regarded as an exciting source for new cell therapies. Recent observations also indicate that stem cells derived from second-trimester amniocentesis are pluripotent – capable of differentiating into multiple lineages, including representatives of all 3 embryonic germ layers. In addition, amniotic fluid stem cells can be used in the generation of disease- or patient-specific stem cells, and amniotic fluid stem cells could be an ideal source for autologous cell replacement therapy in the later life of the fetus. The aim of the present study was to investigate isolation and characterisation of human amniotic fluid-derived mesenchymal stem cells (hAFS). We successfully isolated and characterised hAFS. Amniotic fluid samples were collected in the second trimester (median gestational age: 16 weeks, range: 15–17 weeks) for prenatal diagnosis. Specimens (2 mL) were centrifuged and incubated in low-glucose DMEM supplemented with 10% FBS, 25 ng of basic fibroblast growth factor, and 10 ng of epidermal growth factor at 37°C with 5% CO2. Human amniotic fluid cell (passage 6) expression of stem cell specific markers OCT-4, SOX2, Rex1, FGF4, and NANOG was confirmed by RT-PCR. Flow cytometric analysis showed that hAFS (passage 10) were positive for CD44, CD29, CD146, STRO1, and CD90 but negative for CD19. Immunocytochemical analysis of hAFS (passage 11) also showed the expression of OCT-4, SSEA-1, CD44, CD29, CD146, STRO1, and CD90, but hAFS were negative for CD19 and CD14. In conclusion, according to the previous studies on other mammalians, hAFS are an appropriate source of pluripotent stem cells. Here, we demonstrated that hAFS have a high expression of stem cell specific marker, including embryonic stem cell marker and mesenchymal stem cell marker. Therefore, amniotic fluid may be a suitable alternative source of multipotent stem cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Pasquale Marrazzo ◽  
Cristina Angeloni ◽  
Michela Freschi ◽  
Antonello Lorenzini ◽  
Cecilia Prata ◽  
...  

Amniotic fluid stem cells (AFSCs) are characterized in vivo by a unique niche guarantying their homeostatic role in the body. Maintaining the functionality of stem cells ex vivo for clinical applications requires a continuous improvement of cell culture conditions. Cellular redox status plays an important role in stem cell biology as long as reactive oxygen species (ROS) concentration is finely regulated and their adverse effects are excluded. The aim of this study was to investigate the protective effect of two antioxidants, sulforaphane (SF) and epigallocatechin gallate (EGCG), against in vitro oxidative stress due to hyperoxia and freeze-thawing cycles in AFSCs. Human AFSCs were isolated and characterized from healthy subjects. Assays of metabolic function and antioxidant activity were performed to investigate the effect of SF and EGCG cotreatment on AFSCs. Real-time PCR was used to investigate the effect of the cotreatment on pluripotency, senescence, osteogenic and adipogenic markers, and antioxidant enzymes. Alkaline phosphatase assays and Alizarin Red staining were used to confirm osteogenic differentiation. The cotreatment with SF and EGCG was effective in reducing ROS production, increasing GSH levels, and enhancing the endogenous antioxidant defences through the upregulation of glutathione reductase, NAD(P)H:quinone oxidoreductase-1, and thioredoxin reductase. Intriguingly, the cotreatment sustained the stemness state by upregulating pluripotency markers such as OCT4 and NANOG. Moreover, the cotreatment influenced senescence-associated gene markers in respect to untreated cells. The cotreatment upregulated osteogenic gene markers and promoted osteogenic differentiation in vitro. SF and EGCG can be used in combination in AFSC culture as a strategy to preserve stem cell functionality.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1705-1705
Author(s):  
Joyce S.G Yeoh ◽  
Ronald van Os ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Edo Vellenga ◽  
...  

Abstract Fibroblast Growth Factors (FGF) are a large family of signaling molecules widely involved in tissue development, maintenance and repair. Little is known about the role of FGF/FGF-receptor signaling in the regulation of adult hematopoietic stem cells (HSC). In this study, we assessed the potential of exogenously added FGF-1/2, or retrovirally overexpressed FGF-1 to preserve HSC function in vitro and in vivo. First, we demonstrate that in vitro culture of unfractionated mouse bone marrow cells, in serum-free medium, supplemented with FGF-1 or FGF-2 or FGF-1 + 2 resulted in the robust generation of long-term repopulating (LTR) HSCs. Cultures were maintained for 12 weeks and during that time in vivo competitive reconstitution assays were performed. Stem cell activity was detectable at 3, 5, and 8 weeks after initiation of culture, but lost after 12 weeks. However, whereas 3 and 5 week cultured cells provided radioprotection in non-competitive assays, animals transplanted with 8 or 12 week cultured cells succumbed due to bone marrow failure. So far, we have been unable to expand single, highly purified Lin−Sca-1+c-Kit+ using FGF-1 + 2. Consequently, we speculated that essential intermediate cell populations or signals are required for FGF-induced stem cell conservation. To test this we cultured highly purified CD45.1 Lin−Sca-1+c-Kit+ cells in a co-culture with CD45.2 unfractionated BM. Co-cultured cells were transplanted after 5 weeks in lethally irradiated recipients, and CD45.1 chimerism levels were assessed. High levels of CD45.1 chimerism confirmed that Lin−Sca-1+c-Kit+ cells require an accessory signal in addition to FGF to induced stem cell activity in vitro. We subsequently tested stem cell potential of cells cultured in FGF-1 + 2 for 5 weeks, with the addition of SCF + IL-11 + Flt3L for the last 2, 4 or 7 days. Cell numbers increased with increasing time of growth factor presence. However, only when growth factors were present for 2 days engraftment of cultured cells in a competitive repopulation assay was increased 3.5-fold. Finally, we show by immunohistochemistry that ~10% of freshly isolated Lin−Sca-1+c-Kit+ expresses high levels of FGF-1. Retroviral overexpression of FGF-1 in stem cells resulted in increased growth potential and sustained clonogenic activity in vitro. Upon transplantation of transduced stem cells, FGF-1 overexpression resulted in increased white blood cell counts 4 weeks post-transplant compared to control animals. Most notable was a marked granulocytosis in FGF-1 overexpressing recipients Our results reveal FGF as an important regulator of HSC signaling and homeostasis. Importantly, in the presence of FGF stem cells can be maintained in vitro for 2 months. These findings open novel avenues for in vitro manipulation of stem cells for future clinical therapies.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 92-92
Author(s):  
Klaus Rehe ◽  
Kerrie Wilson ◽  
Simon Bomken ◽  
Hesta McNeill ◽  
Martin Stanulla ◽  
...  

Abstract Abstract 92 Research on cancer stem cells, cells that self-renew and reconstitute the full phenotype of the original malignancy, has yielded controversial results regarding their frequency and identity for many cancers. The hierarchical stem cell model has been well established in some malignancies such as acute myeloid leukemia and states that only rare, immunophenotypically immature blasts harbor stem cell activity, resembling a normal physiological hierarchy. The opposing stochastic model proposes that stemness in cancer cells is supported by extrinsic stimuli and that a substantial fraction of malignant cells have this potential. Continued optimization of in vivo xenotransplantation modeling recently caused a paradigm shift for some cancers, for example in malignant melanoma where stem cell activity was found in as many as 1 in 4 cells. For acute lymphoblastic leukemia (ALL) we and others previously challenged the hierarchical model by demonstrating that both immature and more mature leukemic blasts contain self-renewal properties (Cancer Cell 2008, 14(1), p47-58). In this study we address the frequency of leukemic stem cells in the bulk leukemia and also, more specifically, in subpopulations of different blast maturity by using unsorted and highly purified flow sorted cell fractions. Primary patient material as well as leukemic blasts harvested from engrafted mouse bone marrow (secondary and tertiary material) were sorted for their CD10, CD20 or CD34 expression followed by orthotopic intrafemoral transplantation into severely immunocompromised NOD/scid IL2Rγnull (NSG) mice. Engraftment of transplanted CD19+CD10low and CD19+CD10high, CD19+CD20low and CD19+CD20high and CD19+CD34low and CD19+CD34high blast populations was monitored by 5 color flow cytometry using material from consecutive bone marrow punctures, final bone marrow harvests and/or single cell suspensions from spleens. Primary ALL samples from 15 high risk (BCR/ABL positive (n=8), BCR/ABL like ALL (n=2), high hyperdiploid/MRD positive (n=2), MRD positive (n=1), MLL/AF4 (n=2)), 3 intermediate risk (high WBC/MRD negative (n=2), age >10 years (n=1)) and 3 standard risk (n=3) patients were included. Cells sorted into CD19+CD10low and CD19+CD10high fractions were transplanted from primary patient material (n=4, HR; n=1, SR) and from secondary samples (n=4, HR; n=1; IR) with cells from one HR patient used at limiting dilutions. As few as 100 sorted cells of either fraction were sufficient to repopulate the leukemia. CD19+CD20high and CD19+CD20 low fractions from primary (n=7, HR; n=1, IR), secondary (n=5, HR; n=1, IR) and tertiary material (n=2, HR; n=1, IR) engrafted NSG mice. Limiting dilutions were performed on secondary (n=4, HR) and tertiary material (n=2, HR). Cell numbers required for engraftment varied between leukemias with as few as 100 cells being sufficient to cause engraftment. Limiting dilution experiments using CD19+CD34high and CD19+CD34low fractions from secondary (n=1, HR) and tertiary (n=1, HR) material yielded engraftment with as few as 10 CD19+CD34high and 100 CD19+CD34low cells. Similarly, unsorted primary (n=11, HR; n=2, IR), secondary (n=2, HR) and tertiary material (n=1, HR) required as few as 10 cells for leukemic reconstitution. Taken together, both unsorted and sorted blasts of all immunophenotypes and transplanted with low numbers were able to reconstitute the complete original phenotype of the patient leukemia. All limiting dilutions were transplanted down to 10 cells per mouse and those mice not engrafted yet are still under observation. Furthermore, the ability to self-renew was demonstrated by serial transplantation. Finally, we compared expression of self-renewal associated genes (BMI1, EZH2, HMGA2, MEIS1, TERT) in CD19+CD34low and CD19+CD34high fractions of 5 HR and 1 SR samples with that in cord blood. Interestingly, expression of these genes was not dependent on the CD34 status of the leukemic cells, whereas HMGA2, MEIS1 and TERT were upregulated in CD34+ cord blood cells. In summary we provide strong evidence for the stochastic cancer stem cell model in B precursor ALL by demonstrating that (i) a broad spectrum of blast immunophenotypes exhibit stem cell characteristics and (ii) that this stemness is highly frequent among ALL cells. Disclosures: No relevant conflicts of interest to declare.


1978 ◽  
Vol 148 (5) ◽  
pp. 1351-1366 ◽  
Author(s):  
I Goldschneider ◽  
L K Gordon ◽  
R J Morris

Three approaches were used to demonstrate the presence of Thy-1 antigen on the surface of pluripotent hemopoietic stem cells in the rat. In the first, stem cells from fetal liver, neonatal spleen, and adult bone marrow were prevented from forming hemopoietic colonies in the spleens of irradiated recipients spleen (colony-forming unit assay) by incubation with antibodies to Thy-1 antigen. Highly specific rabbit heteroantiserum to purified rat brain Thy-1 antigen and mouse alloantisera to Thy-1.1-positive thymocytes were equally effective. This inhibition was neutralized by purified Thy-1 antigen. In a second series of experiments, Thy-1-positive and Thy-1-negative populations of nucleated bone marrow cells were separated by the FACS. All of the hemopoietic stem cell activity was recovered in the Thy-1-positive population. The stem cells were among the most strongly positive for Thy-1 antigen, being in the upper 25th percentile for relative fluorescence intensity. The relationships of Thy-1 antigen to the rat bone marrow lymphocyte antigen (BMLA) was shown in a third series of experiments. Rabbit anti-BMLA serum, which is raised against a null population of lymphocyte-like bone marrow cells, has been shown to have anti-stem cell activity. Here we demonstrate by double immunofluorescence, cocapping, and differential absorption studies that Thy-1 and BMLA are parts of the same molecule.


Blood ◽  
1992 ◽  
Vol 80 (8) ◽  
pp. 1957-1964 ◽  
Author(s):  
GJ Spangrude ◽  
DM Brooks

Mouse hematopoietic stem cells can be identified and enriched from populations of normal bone marrow cells by immunofluorescent labeling of cell surface molecules followed by flow cytometric separation. We show here that the majority of hematopoietic stem cell activity, as defined by long-term competitive repopulation of irradiated animals and by a secondary transplant assay for spleen colony-forming units (CFU- S), could be localized in Ly-6b haplotype mice to a fraction of bone marrow cells that expresses the Ly-6A/E (Sca-1) molecule. Further, an analysis of hematopoietic stem cell activity in bone marrow of mouse strains expressing the Thy-1.1 allele indicated that the vast majority of activity was included in the Thy-1low population. In contrast, hematopoietic stem cell activity found in the bone marrow of Thy-1.2 genotype mouse strains was recovered in both the Thy-1neg and the Thy- 1low populations. However, similar to Thy-1.1 strains, most activity was localized to the Ly-6A/E+ population of cells. The difference in Thy-1 phenotype of hematopoietic stem cell activity apparent between Thy-1.1- and Thy-1.2-expressing mouse strains was not caused by differences in the staining intensity of monoclonal antibodies (MoAbs) specific for the Thy-1 alleles. Furthermore, an antiframework MoAb that stains both alleles of Thy-1 separated hematopoietic stem cell activity from mice expressing the two alleles in the same manner as did allele- specific MoAb. The results of this study show that Thy-1 expression is not an invariant characteristic of mouse hematopoietic stem cells, and that mice expressing the Thy-1.1 allele are unique in that hematopoietic stem cell activity is found exclusively in the Thy-1low population.


Development ◽  
2001 ◽  
Vol 128 (11) ◽  
pp. 1923-1931 ◽  
Author(s):  
Richard Waites ◽  
Andrew Hudson

In angiosperms, individual lateral organs and whole flowers may develop asymmetrically along their dorsoventral axes. Dorsoventral asymmetry of Antirrhinum leaves requires activity of the Phantastica gene and other factors acting redundantly with it. We describe the effects of a mutation in the Handlebars gene, identified as an enhancer of the phantastica mutant phenotype. Genetic analysis suggests that Handlebars functions redundantly with Phantastica to promote dorsal fate in lateral organs and to maintain activity of stem cells within shoot apical meristems. Handlebars appears dispensable in vegetative development but is needed for asymmetry of petals along the dorsoventral axis of the flower as a whole. This suggests that common mechanisms may control dorsoventral asymmetry in lateral organ primordia and in floral meristems.


Sign in / Sign up

Export Citation Format

Share Document