scholarly journals l-Menthol increases extracellular dopamine and c-Fos-like immunoreactivity in the dorsal striatum, and promotes ambulatory activity in mice

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260713
Author(s):  
Toyoshi Umezu ◽  
Tomoharu Sano ◽  
Junko Hayashi

Similar to psychostimulants, the peripheral administration of menthol promotes mouse motor activity, and the neurotransmitter dopamine has been suggested to be involved in this effect. The present study aimed to elucidate the effects of l-menthol on parts of the central nervous system that are involved in motor effects. The subcutaneous administration of l-menthol significantly increased the number of c-Fos-like immunoreactive nuclei in the dorsal striatum of the mice, and motor activity was promoted. It also increased the extracellular dopamine level in the dorsal striatum of the mice. These observations indicated that after subcutaneous administration, l-menthol enhances dopamine-mediated neurotransmission, and activates neuronal activity in the dorsal striatum, thereby promoting motor activity in mice.

1982 ◽  
Vol 60 (5) ◽  
pp. 715-719 ◽  
Author(s):  
K. Ramabadran ◽  
C. Suaudeau ◽  
J. J. C. Jacob

The effects of N-methylnaloxone following subcutaneous and intracerebroventricular administrations on nociception were investigated using the hot plate technique. Unlike naloxone, subcutaneous administration of N-methylnaloxone did not enhance the nociceptive reactions. In contrast, intracerebroventricular injection of N-methylnaloxone produced antinociception and tremor. Compared with naloxone, N-methylnaloxone was very weak in precipitating the signs of abstinence in mice rendered acutely dependent on morphine. Two factors, poor penetration into the central nervous system and steric hindrance, might render N-methylnaloxone very weak and hence both these factors must be taken into consideration while analyzing the effects following quaternary derivatives of opioid antagonists.


2009 ◽  
Vol 64 (1-2) ◽  
pp. 1-5 ◽  
Author(s):  
Damião P. de Sousa ◽  
Franklin F. F. Nóbrega ◽  
Liana C. S. L. de Morais ◽  
Reinaldo N. de Almeida

Terpinen-4-ol is a monoterpenoid alcohol and component of the essential oils of several aromatic plants. Similarly to terpinen-4-ol, other monoterpenoid alcohols have shown anticonvulsant activity in convulsion animal models. The present study aimed to investigate the anticonvulsant activity of terpinen-4-ol. Treatment of mice with terpinen-4-ol ( 200 mg/kg) caused a signifi cant decrease in the spontaneous motor activity at 30, 60 and 120 min after administration. Terpinen-4-ol (100 and 200 mg/kg) produced a significant dosedependent increase in the duration of sleeping in mice. Pretreatment of mice with terpinen-4- ol at doses of 100, 200 and 300 mg/kg significantly increased the latency of pentylenetetrazole -induced convulsions. Terpinen-4-ol (200 and 300 mg/kg) also inhibited the induced seizures of picrotoxin. In another model, maximal electroshock seizure, terpinen-4-ol decreased the tonic hind convulsions percentage at the dose of 300 mg/kg. From the overall results we can conclude that terpinen-4-ol showed a depressant effect on the central nervous system and significant anticonvulsant activity.


Life Sciences ◽  
1980 ◽  
Vol 27 (16) ◽  
pp. 1435-1451 ◽  
Author(s):  
Sylvia C. Gerson ◽  
Ross J. Baldessarini

2014 ◽  
Vol 71 (8) ◽  
pp. 767-771 ◽  
Author(s):  
Velibor Vasovic ◽  
Sasa Vukmirovic ◽  
Momir Mikov ◽  
Ivan Mikov ◽  
Zorana Budakov ◽  
...  

Background/Aim. It is known that bile acids improve the absorption, bioavailability and pharmacodynamic characteristics of some drugs. Morphine analgesia is produced by activation of opioid receptors within the central nervous system (CNS) at both spinal and supraspinal levels. Since a morphine molecule contains 3 polar groups and therefore hard to transfer through the blood-brain barrier, the aim of the study was to examine the potential influence of bile acids derivates, namely sodium salt of monoketocholic acid (MKH-Na) and methyl ester of monoketocholic acid (MKH-Me), on analgesic effect of morphine. Methods. White male mice of NMRI-Haan strain, with body weight of 20-24 g, were used in this study. The analgesic effect of morphine (administered by subcutaneous and intramuscular route in a dose of 2 mg/kg), with and without pretreatment with MKH-Na (4 mg/kg) and MKH-Me (4 mg/kg) was estimated by the hot plate method. Results. Administration of MKH-Me prior to subcutaneous administration of morphine increased the morphine analgesic effect but the increase was not statistically significant. At the same time administration of MKH-Na did not affect morphine analgesic effect. The analgesic effect of morphine increased when administered intramuscularly 20 min after MKH-Me administration. When compared with the group of animals treated only with morphine, a statistically significant increase in analgesic effect was detected 10, 30, 40 and 50 min after morphine administration (p < 0.05). Pretreatment with MKH-Na did not affect morphine analgesic effect. Conclusion. According to the results of this study it can be presumed that after intramuscular morphine administration methyl ester of monoketocholic acid increases morphine transport into the central nervous system and consequently the analgesic effect, as well. Further research on bile acids-morphine interaction both in vitro and in vivo is necessary to completely elucidate the mechanism of this interaction and increase in the morphine analgesic effect.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Sign in / Sign up

Export Citation Format

Share Document