scholarly journals A Component of the Xanthomonadaceae Type IV Secretion System Combines a VirB7 Motif with a N0 Domain Found in Outer Membrane Transport Proteins

2011 ◽  
Vol 7 (5) ◽  
pp. e1002031 ◽  
Author(s):  
Diorge P. Souza ◽  
Maxuel O. Andrade ◽  
Cristina E. Alvarez-Martinez ◽  
Guilherme M. Arantes ◽  
Chuck S. Farah ◽  
...  
2005 ◽  
Vol 187 (10) ◽  
pp. 3486-3495 ◽  
Author(s):  
Simon J. Jakubowski ◽  
Eric Cascales ◽  
Vidhya Krishnamoorthy ◽  
Peter J. Christie

ABSTRACT Agrobacterium tumefaciens translocates DNA and protein substrates between cells via a type IV secretion system (T4SS) whose channel subunits include the VirD4 coupling protein, VirB11 ATPase, VirB6, VirB8, VirB2, and VirB9. In this study, we used linker insertion mutagenesis to characterize the contribution of the outer-membrane-associated VirB9 to assembly and function of the VirB/D4 T4SS. Twenty-five dipeptide insertion mutations were classified as permissive for intercellular substrate transfer (Tra+), completely transfer defective (Tra−), or substrate discriminating, e.g., selectively permissive for transfer only of the oncogenic transfer DNA and the VirE2 protein substrates or of a mobilizable IncQ plasmid substrate. Mutations inhibiting transfer of DNA substrates did not affect formation of close contacts of the substrate with inner membrane channel subunits but blocked formation of contacts with the VirB2 and VirB9 channel subunits, which is indicative of a defect in assembly or function of the distal portion of the secretion channel. Several mutations in the N- and C-terminal regions disrupted VirB9 complex formation with the outer-membrane-associated lipoprotein VirB7 or the inner membrane energy sensor VirB10. Several VirB9.i2-producing Tra+ strains failed to elaborate T pilus at detectable levels (Pil−), and three such Tra+ Pil− mutant strains were rendered Tra− upon deletion of virB2, indicating that the cellular form of pilin protein is essential for substrate translocation. Our findings, together with computer-based analyses, support a model in which distinct domains of VirB9 contribute to substrate selection and translocation, establishment of channel subunit contacts, and T-pilus biogenesis.


2010 ◽  
Vol 303 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Yufei Wang ◽  
Zeliang Chen ◽  
Feng Qiao ◽  
Zhijun Zhong ◽  
Jie Xu ◽  
...  

Nature ◽  
2009 ◽  
Vol 462 (7276) ◽  
pp. 1011-1015 ◽  
Author(s):  
Vidya Chandran ◽  
Rémi Fronzes ◽  
Stéphane Duquerroy ◽  
Nora Cronin ◽  
Jorge Navaza ◽  
...  

2011 ◽  
Vol 80 (1) ◽  
pp. 215-227 ◽  
Author(s):  
Kaitlyn Morse ◽  
Junzo Norimine ◽  
Guy H. Palmer ◽  
Eric L. Sutten ◽  
Timothy V. Baszler ◽  
...  

ABSTRACTLike several other bacterial pathogens,Anaplasma marginalehas an outer membrane that induces complete protection from infection and disease. However, the proteins that confer protective immunity and whether protection requires interacting proteins and/or linked T-cell and immunoglobulin G epitopes are not known. Our goal is to target the conserved type IV secretion system (T4SS) to identify conserved, immunogenic membrane proteins that are interacting and linked recognition candidates. Linked recognition is a process by which a B cell is optimally activated by a helper T cell that responds to the same, or physically associated, antigen.A. marginaleT4SS proteins VirB2, VirB4-1, VirB4-2, VirB6-1, VirB7, VirB8-2, VirB9-1, VirB9-2, VirB10, VirB11, and VirD4 were screened for their ability to induce IgG and to stimulate CD4+T cells from outer membrane-vaccinated cattle. VirB9-1, VirB9-2, and VirB10 induced the strongest IgG and T-cell responses in the majority of cattle, although three animals with major histocompatibility complex class II DRB3 restriction fragment length polymorphism types 8/23, 3/16, and 16/27 lacked T-cell responses to VirB9-1, VirB9-1 and VirB9-2, or VirB9-2 and VirB10, respectively. For these animals, VirB9-1-, VirB9-2-, and VirB10-specific IgG production may be associated with T-cell help provided by responses to an interacting protein partner(s). Interacting protein partners indicated by far-Western blotting were confirmed by immunoprecipitation assays and revealed, for the first time, specific interactions of VirB9-1 with VirB9-2 and VirB10. The immunogenicity and interactions of VirB9-1, VirB9-2, and VirB10 justify their testing as a linked protein vaccine againstA. marginale.


2007 ◽  
Vol 75 (5) ◽  
pp. 2333-2342 ◽  
Author(s):  
Job E. Lopez ◽  
Guy H. Palmer ◽  
Kelly A. Brayton ◽  
Michael J. Dark ◽  
Stephanie E. Leach ◽  
...  

ABSTRACT Rickettsial pathogens in the genera Anaplasma and Ehrlichia cause acute infection in immunologically naive hosts and are major causes of tick-borne disease in animals and humans. Immunization with purified outer membranes induces protection against acute Anaplasma marginale infection and disease, and a proteomic and genomic approach recently identified 21 proteins within the outer membrane immunogen in addition to the well-characterized major surface proteins MSP1 to MSP5. Among the newly described proteins were the type IV secretion system (TFSS) proteins VirB9, VirB10, and conjugal transfer protein (CTP). In other gram-negative bacteria, TFSS proteins form channels, facilitate secretion of molecules, and are required for intracellular survival. However, TFSS proteins have not been explored as vaccine antigens. In this study we demonstrate that in Anaplasma marginale outer membrane-vaccinated cattle, VirB9, VirB10, and CTP are recognized by serum immunoglobulin G2 (IgG2) and stimulate memory T-lymphocyte proliferation and gamma interferon secretion. VirB9 induced the greatest proliferation in CD4+ T-cell lines, and VirB9-specific CD4+ T-cell clones responded to three A. marginale strains, confirming the VirB9-specific T-cell responses are directed against epitopes in the native protein. The three TFSS proteins are highly conserved with orthologous proteins in Anaplasma phagocytophilum, Ehrlichia chaffeensis, and Ehrlichia canis. Recognition of TFSS antigens by CD4+ T cells and by IgG2 from cattle immunized with the protective outer membrane fraction provides a rationale for including these proteins in development of vaccines against A. marginale and related pathogens.


2001 ◽  
Vol 120 (5) ◽  
pp. A652-A653
Author(s):  
Y HIRATA ◽  
S MAEDA ◽  
Y MITUNO ◽  
M AKANUMA ◽  
T KAWABE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document