scholarly journals Blowing epithelial cell bubbles with GumB: ShlA-family pore-forming toxins induce blebbing and rapid cellular death in corneal epithelial cells

2019 ◽  
Vol 15 (6) ◽  
pp. e1007825 ◽  
Author(s):  
Kimberly M. Brothers ◽  
Jake D. Callaghan ◽  
Nicholas A. Stella ◽  
Julianna M. Bachinsky ◽  
Mohammed AlHigaylan ◽  
...  
Glycobiology ◽  
2020 ◽  
Vol 30 (11) ◽  
pp. 872-880 ◽  
Author(s):  
Nicole M McColgan ◽  
Marissa N Feeley ◽  
Ashley M Woodward ◽  
Damien Guindolet ◽  
Pablo Argüeso

Abstract Dynamic modification of nuclear and cytoplasmic proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) plays an important role in orchestrating the transcriptional activity of eukaryotic cells. Here, we report that the O-GlcNAc modification contributes to maintaining ocular surface epithelial homeostasis by promoting mucin biosynthesis and barrier function. We found that induction of human corneal epithelial cell differentiation stimulated the global transfer of O-GlcNAc to both nuclear and cytosolic proteins. Inflammatory conditions, on the other hand, were associated with a reduction in the expression of O-GlcNAc transferase at the ocular surface epithelia. Loss- and gain-of-function studies using small interfering RNA targeting O-GlcNAc transferase, or Thiamet G, a selective inhibitor of O-GlcNAc hydrolase, respectively, revealed that the presence of O-GlcNAc was necessary to promote glycocalyx barrier function. Moreover, we found that Thiamet G triggered a correlative increase in both surface expression of MUC16 and apical epithelial cell area while reducing paracellular permeability. Collectively, these results identify intracellular protein O-glycosylation as a novel pathway responsible for promoting the terminal differentiation of human corneal epithelial cells.


2001 ◽  
Vol 69 (8) ◽  
pp. 4931-4937 ◽  
Author(s):  
Suzanne M. J. Fleiszig ◽  
Shiwani K. Arora ◽  
Rajana Van ◽  
Reuben Ramphal

ABSTRACT Pseudomonas aeruginosa invades various epithelial cell types in vitro and in vivo. The P. aeruginosa genome possesses a gene (flhA) which encodes a protein that is believed to be part of the export apparatus for flagellum assembly and which is homologous to invA of Salmonella spp. Because invA is required for invasion ofSalmonella spp., a role for flhA in P. aeruginosa invasion was explored using cultured rabbit corneal epithelial cells. An flhA mutant of P. aeruginosa strain PAO1 was constructed and was shown to be nonmotile. Complementation with flhA in transrestored motility. Corneal cells were infected for 3 h with the wild type (PAO1), the flhA mutant, the flhA mutant complemented with flhA in trans, anflhA mutant containing the plasmid vector control, or anfliC mutant (nonmotile mutant control). Invasion was quantified by amikacin exclusion assays. Both the flhA and the fliC mutants invaded at a lower level than the wild-type strain did, suggesting that both fliC andflhA played roles in invasion. However, loss of motility was not sufficient to explain the reduced invasion by flhAmutants, since centrifugation of bacteria onto cells did not restore invasion to wild-type levels. Unexpectedly, the flhA mutant adhered significantly better to corneal epithelial cells than wild-type bacteria or the fliC mutant did. The percentage of adherent bacteria that invaded was reduced by ∼80% for the flhAmutant and ∼50% for the fliC mutant, showing that only part of the role of flhA in invasion involvesfliC. Invasion was restored by complementing theflhA mutant with flhA in trans but not by the plasmid vector control. Intracellular survival assays, in which intracellular bacteria were enumerated after continued incubation in the presence of antibiotics, showed that although flhAand fliC mutants had a reduced capacity for epithelial cell entry, they were not defective in their ability to survive within those cells after entry. These results suggest that the flagellum assembly type III secretion system plays a role in P. aeruginosainvasion of epithelial cells. Since the flhA mutants were not defective in their ability to adhere to corneal epithelial cells, to retain viability at the cell surface, or to survive inside epithelial cells after entry, the role of flhA in invasion of epithelial cells is likely to occur during the process of bacterial internalization.


2000 ◽  
Vol 68 (1) ◽  
pp. 403-406 ◽  
Author(s):  
Brigitte A. Cowell ◽  
David Y. Chen ◽  
Dara W. Frank ◽  
Amy J. Vallis ◽  
Suzanne M. J. Fleiszig

ABSTRACT The presence of invasion-inhibitory activity that is regulated by the transcriptional activator ExsA of cytotoxic Pseudomonas aeruginosa has previously been proposed. The results of this study show that both ExoT and ExoS, known type III secreted effector proteins of P. aeruginosa that are regulated by ExsA, possess this activity. Invasion was reduced 94.4% by ExoT and 96.0% by ExoS. Invasion-inhibitory activity is not linked to ADP-ribosylation activity, at least for ExoS, since a noncatalytic mutant also inhibits uptake by an epithelial cell line (invasion was reduced 96.0% by ExoSE381A).


2001 ◽  
Vol 114 (22) ◽  
pp. 4033-4040
Author(s):  
Miechia A. Esco ◽  
Zhiyu Wang ◽  
Mark L. McDermott ◽  
Michelle Kurpakus-Wheater

Laminin 5 functions to promote cell-matrix adhesion and therefore is hypothesized to abrogate apoptosis initiated through the loss of epithelial cell contact with extracellular matrix. Laminin 5 levels are decreased in epithelial cells cultured in a hypoxic environment. Exposure of epithelial cells to hypoxia may induce apoptotic pathways transmitted through changes in mitochondrial membrane potential. Using an apoptosis assay based on mitochondrial membrane integrity, the effect of hypoxia (2% oxygen) on human corneal epithelial cell viability was determined. Both a virally transformed corneal epithelial cell line and third passage corneal epithelial cells were resistant to hypoxia-mediated apoptosis for up to 5 days in culture. However, at 7 days in culture, a statistically significant increase in apoptosis was noted in hypoxic corneal epithelial cells compared to normoxic (20% oxygen) controls. Increased apoptosis in hypoxic epithelium at 7 days in culture correlated with decreased deposition of laminin 5 into the extracellular matrix, as determined by western blot analysis and immunofluorescence microscopy. Additionally, the extracellular processing of the α3 and γ2 chains of laminin 5 was negatively impacted by corneal epithelial cell exposure to hypoxia for 7 days. Treatment of human corneal epithelial cells cultured in 20% oxygen with function-inhibiting antibodies to laminin 5 for 2 or 3 days resulted in a statistically significant decrease in proliferation, and concomitant increase in apoptosis, compared with untreated normoxic controls. Based on these results, it appears that mechanisms of hypoxia-mediated apoptosis in human corneal epithelial cells may be initiated by the loss of processed laminin 5 in the extracellular matrix or by the loss of laminin 5-epithelial cell communication and transmitted through mitochondria.


1994 ◽  
Vol 107 (8) ◽  
pp. 2343-2351 ◽  
Author(s):  
F. Castro-Munozledo

Established epithelial cell lines that retain their differentiation potential and growth regulatory characteristics can provide valuable tools for studying gene regulation, extracellular matrix synthesis or growth factor response. They are also useful for drug development and toxicity testing. Experiments were therefore carried out to optimize culture conditions for the long-term, serial transfer of corneal epithelial cells in the presence of 3T3 feeder layers; and to establish a permanent cell line. In such experiments, rabbit corneal epithelial cells were seeded at low inoculation densities, and transferred every 5 days. After 80 population doublings, an epithelial cell line, RCE1, emerged. The cell line is heteroploid, with an average population doubling time of 15.5 hours (vs 18 hours for primary cultures). When RCE1 cells reached confluence, they stratified to form a three- to five-layered epithelium and expressed the differentiation-related keratin pair K3/K12 as shown by immunoblot and immunostaining. Biosynthetic labeling of proliferating, confluent and stratified cultures further showed that RCE1 cells expressed keratin pairs K5/K14, K6/K16 and K3/K12, thus mimicking faithfully the stage-dependent differentiation of primary cultures of rabbit corneal keratinocytes. The results demonstrated that RCE1 cells provide a useful model for studying corneal cell growth and differentiation.


Author(s):  
Xiaoya An ◽  
Guoliang Wang ◽  
Mengyi Jin ◽  
Xiaoping Zhou ◽  
Shubin Gao ◽  
...  

It has been a long-standing challenge to obtain from cell cultures adequate amounts of mouse corneal epithelial cells (mCEC) to perform transplantation surgery. This limitation is attributable to the passage dependent declines in their proliferative activity. We describe here development of a novel 6C medium that contains six different modulators of different signaling pathways, which control proliferative mCEC activity. Its usage shortens the time and effort required to obtain epithelial sheets for hastening healing of an epithelial wound in an experimental animal model. This serum-free 6C medium contains:Y27632, forskolin, SB431542, DAPT, IWP-2, LDN-193189 and also DermaLife K keratinocyte calcium. Their inclusion inhibits rises in four specific markers of epithelial mesenchymal transdifferentiation:ZEB1/2, Snail, β-catenin and α-SMA. This medium is applied in a feeder-free air-lifted system to obtain sufficient populations of epithelial progenitor cells whose procurement is facilitated due to suppression of progenitor epithelial cell transdifferentiation into epithelial-mesenchymal cells. Diminution of this decline in transdifferentiation was confirmed based on the invariance of P63, K14, Pax6, and K12 gene expression levels. This cell culture technique is expected to facilitate ex vivo characterization of mechanisms underlying cell fate determination. Furthermore, its implementation will improve yields of progenitor mouse corneal epithelial cells, which increases the likelihood of using these cells as a source to generate epithelial sheets for performing transplantation surgery to treat limbal stem cell deficiency in a clinical setting. In addition, the novel insight obtainable from such studies is expected to improve the outcomes of corneal regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document