scholarly journals Entamoeba histolytica activation of caspase-1 degrades cullin that attenuates NF-κB dependent signaling from macrophages

2021 ◽  
Vol 17 (9) ◽  
pp. e1009936
Author(s):  
Attinder Chadha ◽  
France Moreau ◽  
Shanshan Wang ◽  
Antoine Dufour ◽  
Kris Chadee

While Entamoeba histolytica (Eh)-induced pro-inflammatory responses are critical in disease pathogenesis, the downstream signaling pathways that subsequently dampens inflammation and the immune response remains unclear. Eh in contact with macrophages suppresses NF-κB signaling while favoring NLRP3-dependent pro-inflammatory cytokine production by an unknown mechanism. Cullin-1 and cullin-5 (cullin-1/5) assembled into a multi-subunit RING E3 ubiquitin ligase complex are substrates for neddylation that regulates the ubiquitination pathway important in NF-κB activity and pro-inflammatory cytokine production. In this study, we showed that upon live Eh contact with human macrophages, cullin-1/4A/4B/5 but not cullin-2/3, were degraded within 10 minutes. Similar degradation of cullin-1/5 were observed from colonic epithelial cells and proximal colonic loops tissues of mice inoculated with live Eh. Degradation of cullin-1/5 was dependent on Eh-induced activation of caspase-1 via the NLRP3 inflammasome. Unlike cullin-4B, the degradation of cullin-4A was partially dependent on caspase-1 and was inhibited with a pan caspase inhibitor. Cullin-1/5 degradation was dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4, but not EhCP-A5, based on pharmacological inhibition of the cysteine proteinases and EhCP-A5 deficient parasites. siRNA silencing of cullin-1/5 decreased the phosphorylation of pIκ-Bα in response to Eh and LPS stimulation and downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. These results unravel a unique outside-in strategy employed by Eh to attenuate NF-κB-dependent pro-inflammatory responses via NLRP3 activation of caspase-1 that degraded cullin-1/5 from macrophages.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ricardo Louzada da Silva ◽  
Diana M. Elizondo ◽  
Nailah Z. D. Brandy ◽  
Naomi L. Haddock ◽  
Thomas A. Boddie ◽  
...  

AbstractMacrophages and monocytes are important for clearance of Leishmania infections. However, immune evasion tactics employed by the parasite results in suppressed inflammatory responses, marked by deficient macrophage functions and increased accumulation of monocytes. This results in an ineffective ability to clear parasite loads. Allograft Inflammatory Factor-1 (AIF1) is expressed in myeloid cells and serves to promote immune responses. However, AIF1 involvement in monocyte and macrophage functions during parasitic infections has not been explored. This study now shows that Leishmania donovani inhibits AIF1 expression in macrophages to block pro-inflammatory responses. Mice challenged with the parasite had markedly reduced AIF1 expression in splenic macrophages. Follow-up studies using in vitro approaches confirmed that L. donovani infection in macrophages suppresses AIF1 expression, which correlated with reduction in pro-inflammatory cytokine production and increased parasite load. Ectopic overexpression of AIF1 in macrophages provided protection from infection, marked by robust pro-inflammatory cytokine production and efficient pathogen clearance. Further investigations found that inhibiting AIF1 expression in bone marrow cells or monocytes impaired differentiation into functional macrophages. Collectively, results show that AIF1 is a critical regulatory component governing monocyte and macrophage immune functions and that L. donovani infection can suppress the gene as an immune evasion tactic.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 457-457
Author(s):  
Tamisha Y. Vaughan-Whitley ◽  
Hikaru Nishio ◽  
Barry Imhoff ◽  
Zhengqi Wang ◽  
Silvia T. Bunting ◽  
...  

Abstract Macrophages are responsible for protecting the body against foreign invaders. We have been studying the role of Grb2-associated binding proteins (Gabs) in macrophage biology. In mice, Gabs are adaptor proteins that include three family members (Gab1, Gab2, and Gab3) that play critical regulatory roles in modulating cytokine receptor signaling. Gab2 knockout mice have no developmental defects but have impaired allergic responses, osteoclast defects, altered mast cell development, and altered hematopoiesis. Gab3 knockout mice have no defined phenotypes alone and although highly expressed in macrophages, a functional role was not found despite considerable focus on this cell type. Therefore, we set out to determine the combined role of Gab2 and Gab3 to determine whether they performed redundant functions not observable in single knockout mice. To analyze regulation of macrophage cytokine production, a Gab2/3 deficient mouse model was generated on the C57BL/6 background. Bone Marrow Derived Macrophages (BMDM) were expanded from the bone marrow (BM) of wild-type (WT), Gab2 and Gab3 single knockout and Gab2/3 knockout mice and found to similarly co-express CD11b and F4/80. However, Gab2/3 knockout BM produced only 30% of wild-type BMDM numbers. Despite reductions in BMDM absolute numbers, isolated BMDM demonstrated significant induction of pro-inflammatory cytokines TNF-α and IL-12 and anti-inflammatory cytokine IL-10 mRNA at baseline. Interestingly, after LPS stimulation (100ng/ml) we detected much greater induction of TNF-α and IL-12 mRNA and protein expression. Interestingly, despite increased IL-10 mRNA induction in Gab2/3 knockout BMDM, no IL-10 protein expression could be detected by Luminex assay. No changes were observed in production of interferon or STAT1 activation in these BMDM. Studies have shown that rapamycin treatment of macrophages suppresses mTORC1 and subsequently reduces IL-10 production and promotes pro-inflammatory cytokine production. Gab2 is known for its role in regulating the PI3K pathway through interactions with the p85 regulatory subunit of PI3K. Therefore, we also examined whether mTOR activation was effected by Gab2/3 deficiency causing altered cytokine expression. Deletion of Gab2/3 in BMDMs treated with LPS showed an inhibition of 4EBP1 phosphorylation and increased AKT phosphorylation. These results suggest that Gabs may play a critical role in modulating mTOR activation and potentially causing defects in protein translation that reflect in reduced IL-10 cytokine levels in Gab2/3 knockout cells. IL-10 has a critical immunoregulatory role that is dysregulated in patients with inflammatory bowel disease. IL-10 deficient mice develop colitis due to loss of mucosal immune tolerance. Strikingly, as early as two months of age in vivo 12/32 (37.5%) Gab2/3 knockout mice developed rectal prolapse and suffered from diarrhea within a six month period. Histological analysis of isolated colons using a scoring system confirmed spontaneous development of colitis in Gab2/3 knockout mice compared to no phenotypes observed in WT and single knockout controls. To determine whether the BM was directly involved in the disease, BM chimeras were generated using irradiated WT mice as recipients and Gab2/3 knockout mice as donors. Susceptible recipients receiving Gab2/3 knockout BM showed a more invasive colitis phenotype than the spontaneous disease and resulted in forced euthanization due to body weight decreases greater than 25%. Multiple ulcerations were present in most of the colon proximal region, with extensive epithelial damage, transmural inflammation, and in some mice adenocarcinoma. Notably, we did not observe adenocarcinoma in untransplanted Gab2/3 knockout mice, suggesting that epithelial deletion of Gab2/3 may suppress cancer whereas in the bone marrow chimera model, the epithelial cells are WT and can be transformed. Similar phenotypes were also observed in secondary transplant recipients. Lastly, treatment of Gab2/3 knockout mice with dextran-sodium-sulfate (DSS) induced rapid severe colitis that resulted in death of 80% and 40% of Gab2/3 knockout and WT mice respectively. Overall, these observations demonstrate a major redundant role for Gab2 and Gab3 in macrophage immune surveillance required for the prevention of colitis in mice. Disclosures No relevant conflicts of interest to declare.


1997 ◽  
Vol 56 ◽  
pp. 42
Author(s):  
N. Bessis ◽  
G. Chiocchia ◽  
G. Kollias ◽  
A. Minty ◽  
C. Fournier ◽  
...  

Blood ◽  
2012 ◽  
Vol 119 (19) ◽  
pp. 4430-4440 ◽  
Author(s):  
Thomas Duhen ◽  
Rebekka Duhen ◽  
Antonio Lanzavecchia ◽  
Federica Sallusto ◽  
Daniel J. Campbell

Abstract FOXP3+ regulatory T (Treg) cells are a broadly acting and potent anti-inflammatory population of CD4+ T cells essential for maintaining immune homeostasis and preventing debilitating autoimmunity. Based on chemokine receptor expression, we identified distinct populations of Treg cells in human blood expected to colocalize with different Th cell subsets. Although each population was functionally suppressive, they displayed unique patterns of pro- and anti-inflammatory cytokine production, differentially expressed lineage-specifying transcription factors, and responded differently to antigens associated with Th1 and Th17 responses. These results highlight a previously unappreciated degree of phenotypic and functional diversity in human Treg cells that allows subsets with unique specificities and immunomodulatory functions to be targeted to defined immune environments during different types of inflammatory responses.


2020 ◽  
pp. 1-8
Author(s):  
Ahmad Zavaran Hosseini ◽  
Ahmad Ali Noorbala ◽  
Ahmad Zavaran Hosseini ◽  
Esfandiar Azizi ◽  
Saiyad Bastaminejad ◽  
...  

Background: It has been suggested that the function of myeloid immune cells, especially macrophages in schizophrenia patients (SCZ), is impaired. Considering the role of macrophages in induction of inflammatory responses, the purpose of this study is to examine the response of monocyte-derived macrophages (MDM) of schizophrenia patients to Toxoplasma gondii (T. gondii) challenge. Materials and Methods: MDMs were generated from 20 SCZ and 10 healthy controls (HC). The cells were exposed to T. gondii. The Cytokine (IL-10, IL-12, IL-6, and TNF-α) and nitric oxide (NO) productions were measured. The expression of miR146a and miR155 was examined using qPCR. Results: The level of NO was significantly higher in the supernatant of MDMs of SCZ compared with the HC (P≤0.05) in response to T. gondii. There was no difference in cytokine (IL-10, IL-12, IL-6, and TNF-α) production of SCZ compared to the controls. The effect of miR-155/ miR-146a on inflammatory cytokine production was confirmed using anti-miRNAs. There were no significant effect in miR-155/ miR-146a expression of macrophages of schizophrenia patients to T. gondii compared to control. Conclusion: In this study, although the cytokine response and the amount of miR-155/ miR-146a expression of macrophages to T. gondii was not significantly different between the schizophrenia patients and the healthy subjects, the significant differences in the production of nitric oxide strengthen the hypothesis of the functional failure of these cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ioanna Pantazi ◽  
Ahmed A. Al-Qahtani ◽  
Fatimah S Alhamlan ◽  
Hani Alothaid ◽  
Sabine Matou-Nasri ◽  
...  

The major cause of death in SARS-CoV-2 infected patients is due to de-regulation of the innate immune system and development of cytokine storm. SARS-CoV-2 infects multiple cell types in the lung, including macrophages, by engagement of its spike (S) protein on angiotensin converting enzyme 2 (ACE2) receptor. ACE2 receptor initiates signals in macrophages that modulate their activation, including production of cytokines and chemokines. IL-1R-associated kinase (IRAK)-M is a central regulator of inflammatory responses regulating the magnitude of TLR responsiveness. Aim of the work was to investigate whether SARS-CoV-2 S protein-initiated signals modulate pro-inflammatory cytokine production in macrophages. For this purpose, we treated PMA-differentiated THP-1 human macrophages with SARS-CoV-2 S protein and measured the induction of inflammatory mediators including IL6, TNFα, IL8, CXCL5, and MIP1a. The results showed that SARS-CoV-2 S protein induced IL6, MIP1a and TNFα mRNA expression, while it had no effect on IL8 and CXCL5 mRNA levels. We further examined whether SARS-CoV-2 S protein altered the responsiveness of macrophages to TLR signals. Treatment of LPS-activated macrophages with SARS-CoV-2 S protein augmented IL6 and MIP1a mRNA, an effect that was evident at the protein level only for IL6. Similarly, treatment of PAM3csk4 stimulated macrophages with SARS-CoV-2 S protein resulted in increased mRNA of IL6, while TNFα and MIP1a were unaffected. The results were confirmed in primary human peripheral monocytic cells (PBMCs) and isolated CD14+ monocytes. Macrophage responsiveness to TLR ligands is regulated by IRAK-M, an inactive IRAK kinase isoform. Indeed, we found that SARS-CoV-2 S protein suppressed IRAK-M mRNA and protein expression both in THP1 macrophages and primary human PBMCs and CD14+ monocytes. Engagement of SARS-CoV-2 S protein with ACE2 results in internalization of ACE2 and suppression of its activity. Activation of ACE2 has been previously shown to induce anti-inflammatory responses in macrophages. Treatment of macrophages with the ACE2 activator DIZE suppressed the pro-inflammatory action of SARS-CoV-2. Our results demonstrated that SARS-CoV-2/ACE2 interaction rendered macrophages hyper-responsive to TLR signals, suppressed IRAK-M and promoted pro-inflammatory cytokine expression. Thus, activation of ACE2 may be a potential anti-inflammatory therapeutic strategy to eliminate the development of cytokine storm observed in COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document