scholarly journals Polymerization of C9 enhances bacterial cell envelope damage and killing by membrane attack complex pores

2021 ◽  
Vol 17 (11) ◽  
pp. e1010051
Author(s):  
Dennis J. Doorduijn ◽  
Dani A. C. Heesterbeek ◽  
Maartje Ruyken ◽  
Carla J. C. de Haas ◽  
Daphne A. C. Stapels ◽  
...  

Complement proteins can form membrane attack complex (MAC) pores that directly kill Gram-negative bacteria. MAC pores assemble by stepwise binding of C5b, C6, C7, C8 and finally C9, which can polymerize into a transmembrane ring of up to 18 C9 monomers. It is still unclear if the assembly of a polymeric-C9 ring is necessary to sufficiently damage the bacterial cell envelope to kill bacteria. In this paper, polymerization of C9 was prevented without affecting binding of C9 to C5b-8, by locking the first transmembrane helix domain of C9. Using this system, we show that polymerization of C9 strongly enhanced damage to both the bacterial outer and inner membrane, resulting in more rapid killing of several Escherichia coli and Klebsiella strains in serum. By comparing binding of wildtype and ‘locked’ C9 by flow cytometry, we also show that polymerization of C9 is impaired when the amount of available C9 per C5b-8 is limited. This suggests that an excess of C9 is required to efficiently form polymeric-C9. Finally, we show that polymerization of C9 was impaired on complement-resistant E. coli strains that survive killing by MAC pores. This suggests that these bacteria can specifically block polymerization of C9. All tested complement-resistant E. coli expressed LPS O-antigen (O-Ag), compared to only one out of four complement-sensitive E. coli. By restoring O-Ag expression in an O-Ag negative strain, we show that the O-Ag impairs polymerization of C9 and results in complement-resistance. Altogether, these insights are important to understand how MAC pores kill bacteria and how bacterial pathogens can resist MAC-dependent killing.

2021 ◽  
Author(s):  
Dennis J. Doorduijn ◽  
Dani A.C. Heesterbeek ◽  
Maartje Ruyken ◽  
Carla J.C. de Haas ◽  
Daphne A.C. Stapels ◽  
...  

Complement proteins can form Membrane Attack Complex (MAC) pores that directly kill Gram-negative bacteria. MAC pores assemble by stepwise binding of C5b, C6, C7, C8 and finally C9, which can polymerize into a transmembrane ring of up to 18 C9 monomers. It is still unclear if the assembly of a polymeric-C9 ring is necessary to sufficiently damage the bacterial cell envelope to kill bacteria, because a robust way to specifically prevent polymerization of C9 has been lacking. In this paper, polymerization of C9 was prevented without affecting the binding of C9 to C5b-8 by locking the first transmembrane helix domain of C9. We show that polymerization of C9 strongly enhanced bacterial cell envelope damage and killing by MAC pores for several Escherichia coli and Klebsiella strains. Moreover, we show that polymerization of C9 is impaired on complement-resistant E. coli strains that survive killing by MAC pores. Altogether, these insights are important to understand how MAC pores kill bacteria and how bacterial pathogens can resist MAC-dependent killing.


BioEssays ◽  
2019 ◽  
Vol 41 (10) ◽  
pp. 1900074 ◽  
Author(s):  
Dennis J. Doorduijn ◽  
Suzan H. M. Rooijakkers ◽  
Dani A. C. Heesterbeek

2021 ◽  
Vol 17 (1) ◽  
pp. e1009227
Author(s):  
Dani A. C. Heesterbeek ◽  
Remy M. Muts ◽  
Vincent P. van Hensbergen ◽  
Pieter de Saint Aulaire ◽  
Tom Wennekes ◽  
...  

Infections with Gram-negative bacteria form an increasing risk for human health due to antibiotic resistance. Our immune system contains various antimicrobial proteins that can degrade the bacterial cell envelope. However, many of these proteins do not function on Gram-negative bacteria, because the impermeable outer membrane of these bacteria prevents such components from reaching their targets. Here we show that complement-dependent formation of Membrane Attack Complex (MAC) pores permeabilizes this barrier, allowing antimicrobial proteins to cross the outer membrane and exert their antimicrobial function. Specifically, we demonstrate that MAC-dependent outer membrane damage enables human lysozyme to degrade the cell wall of E. coli. Using flow cytometry and confocal microscopy, we show that the combination of MAC pores and lysozyme triggers effective E. coli cell wall degradation in human serum, thereby altering the bacterial cell morphology from rod-shaped to spherical. Completely assembled MAC pores are required to sensitize E. coli to the antimicrobial actions of lysozyme and other immune factors, such as Human Group IIA-secreted Phospholipase A2. Next to these effects in a serum environment, we observed that the MAC also sensitizes E. coli to more efficient degradation and killing inside human neutrophils. Altogether, this study serves as a proof of principle on how different players of the human immune system can work together to degrade the complex cell envelope of Gram-negative bacteria. This knowledge may facilitate the development of new antimicrobials that could stimulate or work synergistically with the immune system.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Niccolò Morè ◽  
Alessandra M. Martorana ◽  
Jacob Biboy ◽  
Christian Otten ◽  
Matthias Winkle ◽  
...  

ABSTRACTGram-negative bacteria have a tripartite cell envelope with the cytoplasmic membrane (CM), a stress-bearing peptidoglycan (PG) layer, and the asymmetric outer membrane (OM) containing lipopolysaccharide (LPS) in the outer leaflet. Cells must tightly coordinate the growth of their complex envelope to maintain cellular integrity and OM permeability barrier function. The biogenesis of PG and LPS relies on specialized macromolecular complexes that span the entire envelope. In this work, we show thatEscherichia colicells are capable of avoiding lysis when the transport of LPS to the OM is compromised, by utilizing LD-transpeptidases (LDTs) to generate 3-3 cross-links in the PG. This PG remodeling program relies mainly on the activities of the stress response LDT, LdtD, together with the major PG synthase PBP1B, its cognate activator LpoB, and the carboxypeptidase PBP6a. Our data support a model according to which these proteins cooperate to strengthen the PG in response to defective OM synthesis.IMPORTANCEIn Gram-negative bacteria, the outer membrane protects the cell against many toxic molecules, and the peptidoglycan layer provides protection against osmotic challenges, allowing bacterial cells to survive in changing environments. Maintaining cell envelope integrity is therefore a question of life or death for a bacterial cell. Here we show thatEscherichia colicells activate the LD-transpeptidase LdtD to introduce 3-3 cross-links in the peptidoglycan layer when the integrity of the outer membrane is compromised, and this response is required to avoid cell lysis. This peptidoglycan remodeling program is a strategy to increase the overall robustness of the bacterial cell envelope in response to defects in the outer membrane.


2021 ◽  
Author(s):  
Tiago Baeta ◽  
Karine Giandoreggio-Barranco ◽  
Isabel Ayala ◽  
Elisabete CCM Moura ◽  
Paola Sperandeo ◽  
...  

Lipopolysaccharide (LPS) is an essential glycolipid covering the surface of gram-negative bacteria. Its transport involves a dedicated 7 protein transporter system, the Lpt machinery, that physically spans the entire cell envelope. LptB2FG complex is an ABC transporter that hydrolyses Adenosine Triphosphate (ATP) to extract LPS from the inner membrane (IM). LptB2FG was extracted directly from IM with its original lipid environment by Styrene-Maleic acids polymers(SMA). SMA-LptB2FG in nanodiscs displays ATPase activity and a previously uncharacterized Adenylate Kinase (AK) activity. It catalyzes phosphotransfer between two ADP molecules to generate ATP and AMP. ATPase and AK activities of LptB2FG are both stimulated by the interaction on the periplasmic side with LptC and LptA partners and inhibited by the presence of LptC transmembrane helix. Isolated ATPase module (LptB) has weak AK activity in absence of LptF and LptG, and one mutation, that weakens affinity for ADP, has AK activity similar to that of fully assembled complex. LptB2FG is thus capable of producing ATP from ADP depending on the assembly of the Lpt bridge and the AK activity might be important to ensure efficient LPS transport in fully assembled Lpt system.


2021 ◽  
Vol 118 (19) ◽  
pp. e2101989118
Author(s):  
Raj Bahadur ◽  
Pavan Kumar Chodisetti ◽  
Manjula Reddy

The gram‐negative bacterial cell envelope is made up of an outer membrane (OM), an inner membrane (IM) that surrounds the cytoplasm, and a periplasmic space between the two membranes containing peptidoglycan (PG or murein). PG is an elastic polymer that forms a mesh-like sacculus around the IM, protecting cells from turgor and environmental stress conditions. In several bacteria, including Escherichia coli, the OM is tethered to PG by an abundant OM lipoprotein, Lpp (or Braun’s lipoprotein), that functions to maintain the structural and functional integrity of the cell envelope. Since its discovery, Lpp has been studied extensively, and although l,d-transpeptidases, the enzymes that catalyze the formation of PG−Lpp linkages, have been earlier identified, it is not known how these linkages are modulated. Here, using genetic and biochemical approaches, we show that LdtF (formerly yafK), a newly identified paralog of l,d-transpeptidases in E. coli, is a murein hydrolytic enzyme that catalyzes cleavage of Lpp from the PG sacculus. LdtF also exhibits glycine-specific carboxypeptidase activity on muropeptides containing a terminal glycine residue. LdtF was earlier presumed to be an l,d-transpeptidase; however, our results show that it is indeed an l,d-endopeptidase that hydrolyzes the products generated by the l,d-transpeptidases. To summarize, this study describes the discovery of a murein endopeptidase with a hitherto unknown catalytic specificity that removes the PG−Lpp cross-links, suggesting a role for LdtF in the regulation of PG–OM linkages to maintain the structural integrity of the bacterial cell envelope.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alessandra M. Martorana ◽  
Elisabete C. C. M. Moura ◽  
Paola Sperandeo ◽  
Flavia Di Vincenzo ◽  
Xiaofei Liang ◽  
...  

Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB2CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB2CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone–protease in Escherichia coli, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.


Sign in / Sign up

Export Citation Format

Share Document