scholarly journals Degradation of Components of the Lpt Transenvelope Machinery Reveals LPS-Dependent Lpt Complex Stability in Escherichia coli

2021 ◽  
Vol 8 ◽  
Author(s):  
Alessandra M. Martorana ◽  
Elisabete C. C. M. Moura ◽  
Paola Sperandeo ◽  
Flavia Di Vincenzo ◽  
Xiaofei Liang ◽  
...  

Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB2CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB2CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone–protease in Escherichia coli, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.

mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Niccolò Morè ◽  
Alessandra M. Martorana ◽  
Jacob Biboy ◽  
Christian Otten ◽  
Matthias Winkle ◽  
...  

ABSTRACTGram-negative bacteria have a tripartite cell envelope with the cytoplasmic membrane (CM), a stress-bearing peptidoglycan (PG) layer, and the asymmetric outer membrane (OM) containing lipopolysaccharide (LPS) in the outer leaflet. Cells must tightly coordinate the growth of their complex envelope to maintain cellular integrity and OM permeability barrier function. The biogenesis of PG and LPS relies on specialized macromolecular complexes that span the entire envelope. In this work, we show thatEscherichia colicells are capable of avoiding lysis when the transport of LPS to the OM is compromised, by utilizing LD-transpeptidases (LDTs) to generate 3-3 cross-links in the PG. This PG remodeling program relies mainly on the activities of the stress response LDT, LdtD, together with the major PG synthase PBP1B, its cognate activator LpoB, and the carboxypeptidase PBP6a. Our data support a model according to which these proteins cooperate to strengthen the PG in response to defective OM synthesis.IMPORTANCEIn Gram-negative bacteria, the outer membrane protects the cell against many toxic molecules, and the peptidoglycan layer provides protection against osmotic challenges, allowing bacterial cells to survive in changing environments. Maintaining cell envelope integrity is therefore a question of life or death for a bacterial cell. Here we show thatEscherichia colicells activate the LD-transpeptidase LdtD to introduce 3-3 cross-links in the peptidoglycan layer when the integrity of the outer membrane is compromised, and this response is required to avoid cell lysis. This peptidoglycan remodeling program is a strategy to increase the overall robustness of the bacterial cell envelope in response to defects in the outer membrane.


2020 ◽  
Vol 295 (34) ◽  
pp. 11984-11994 ◽  
Author(s):  
Jean-François Collet ◽  
Seung-Hyun Cho ◽  
Bogdan I. Iorga ◽  
Camille V. Goemans

The cell envelope of Gram-negative bacteria is a multilayered structure essential for bacterial viability; the peptidoglycan cell wall provides shape and osmotic protection to the cell, and the outer membrane serves as a permeability barrier against noxious compounds in the external environment. Assembling the envelope properly and maintaining its integrity are matters of life and death for bacteria. Our understanding of the mechanisms of envelope assembly and maintenance has increased tremendously over the past two decades. Here, we review the major achievements made during this time, giving central stage to the amino acid cysteine, one of the least abundant amino acid residues in proteins, whose unique chemical and physical properties often critically support biological processes. First, we review how cysteines contribute to envelope homeostasis by forming stabilizing disulfides in crucial bacterial assembly factors (LptD, BamA, and FtsN) and stress sensors (RcsF and NlpE). Second, we highlight the emerging role of enzymes that use cysteine residues to catalyze reactions that are necessary for proper envelope assembly, and we also explain how these enzymes are protected from oxidative inactivation. Finally, we suggest future areas of investigation, including a discussion of how cysteine residues could contribute to envelope homeostasis by functioning as redox switches. By highlighting the redox pathways that are active in the envelope of Escherichia coli, we provide a timely overview of the assembly of a cellular compartment that is the hallmark of Gram-negative bacteria.


2021 ◽  
Author(s):  
Matthias Winkle ◽  
Víctor M. Hernández-Rocamora ◽  
Karthik Pullela ◽  
Emily C. A. Goodall ◽  
Alessandra M. Martorana ◽  
...  

ABSTRACTGram-negative bacteria have a unique cell envelope with a lipopolysaccharide-containing outer membrane that is tightly connected to a thin layer of peptidoglycan. The tight connection between the outer membrane and peptidoglycan is needed to maintain the outer membrane as an impermeable barrier for many toxic molecules and antibiotics. Enterobacteriaceae such as Escherichia coli covalently attach the abundant outer membrane-anchored lipoprotein Lpp (Braun’s lipoprotein) to tripeptides in peptidoglycan, mediated by the transpeptidases LdtA, LdtB and LdtC. LdtD and LdtE are members of the same family of LD-transpeptidases but they catalyse a different reaction, the formation of 3-3 cross-links in the peptidoglycan. The function of the sixth homologue in E. coli, LdtF remains unclear, although it has been shown to become essential in cells with inhibited LPS export to the outer membrane. We now show that LdtF hydrolyses the Lpp-peptidoglycan linkage, detaching Lpp from peptidoglycan, and have renamed LdtF to peptidoglycan meso-diaminopimelic acid protein amidase A (DpaA). We show that the detachment of Lpp from peptidoglycan is beneficial for the cell under certain stress conditions and that the deletion of dpaA allows frequent transposon inactivation in the lapB (yciM) gene, whose product down-regulates lipopolysaccharide biosynthesis. DpaA-like proteins have characteristic sequence motifs and are present in many Gram-negative bacteria of which some have no Lpp, raising the possibility that DpaA has other substrates in these species. Overall, our data show that the Lpp-peptidoglycan linkage in E. coli is more dynamic than previously appreciated.IMPORTANCEGram-negative bacteria have a complex cell envelope with two membranes and a periplasm containing the peptidoglycan layer. The outer membrane is firmly connected to the peptidoglycan by highly abundant proteins. The outer membrane-anchored Braun’s lipoprotein (Lpp) is the most abundant protein in E. coli and about one third of the Lpp molecules become covalently attached to tripeptides in peptidoglycan. The attachment of Lpp to peptidoglycan stabilizes the cell envelope and is crucial for the outer membrane to function as a permeability barrier for a range of toxic molecules and antibiotics. So far the attachment of Lpp to peptidoglycan has been considered to be irreversible. We have now identified an amidase, DpaA, which is capable of detaching Lpp from PG and we show that the detachment of Lpp is important under certain stress conditions. DpaA-like proteins are present in many Gram-negative bacteria and may have different substrates in these species.


mBio ◽  
2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Matthias Winkle ◽  
Víctor M. Hernández-Rocamora ◽  
Karthik Pullela ◽  
Emily C. A. Goodall ◽  
Alessandra M. Martorana ◽  
...  

ABSTRACT Gram-negative bacteria have a unique cell envelope with a lipopolysaccharide-containing outer membrane that is tightly connected to a thin layer of peptidoglycan. The tight connection between the outer membrane and peptidoglycan is needed to maintain the outer membrane as an impermeable barrier for many toxic molecules and antibiotics. Enterobacteriaceae such as Escherichia coli covalently attach the abundant outer membrane-anchored lipoprotein Lpp (Braun’s lipoprotein) to tripeptides in peptidoglycan, mediated by the transpeptidases LdtA, LdtB, and LdtC. LdtD and LdtE are members of the same family of ld-transpeptidases but they catalyze a different reaction, the formation of 3-3 cross-links in the peptidoglycan. The function of the sixth homologue in E. coli, LdtF, remains unclear, although it has been shown to become essential in cells with inhibited lipopolysaccharide export to the outer membrane. We now show that LdtF hydrolyzes the Lpp-peptidoglycan linkage, detaching Lpp from peptidoglycan, and have renamed LdtF to peptidoglycan meso-diaminopimelic acid protein amidase A (DpaA). We show that the detachment of Lpp from peptidoglycan is beneficial for the cell under certain stress conditions and that the deletion of dpaA allows frequent transposon inactivation in the lapB (yciM) gene, whose product downregulates lipopolysaccharide biosynthesis. DpaA-like proteins have characteristic sequence motifs and are present in many Gram-negative bacteria, of which some have no Lpp, raising the possibility that DpaA has other substrates in these species. Overall, our data show that the Lpp-peptidoglycan linkage in E. coli is more dynamic than previously appreciated. IMPORTANCE Gram-negative bacteria have a complex cell envelope with two membranes and a periplasm containing the peptidoglycan layer. The outer membrane is firmly connected to the peptidoglycan by highly abundant proteins. The outer membrane-anchored Braun’s lipoprotein (Lpp) is the most abundant protein in E. coli, and about one-third of the Lpp molecules become covalently attached to tripeptides in peptidoglycan. The attachment of Lpp to peptidoglycan stabilizes the cell envelope and is crucial for the outer membrane to function as a permeability barrier for a range of toxic molecules and antibiotics. So far, the attachment of Lpp to peptidoglycan has been considered to be irreversible. We have now identified an amidase, DpaA, which is capable of detaching Lpp from peptidoglycan, and we show that the detachment of Lpp is important under certain stress conditions. DpaA-like proteins are present in many Gram-negative bacteria and may have different substrates in these species.


Author(s):  
Jianli Wang ◽  
Wenjian Ma ◽  
Yu Fang ◽  
Hao Liang ◽  
Huiting Yang ◽  
...  

Gram-negative bacteria are intrinsically resistant to antibiotics due to the presence of the cell envelope, but mechanisms are still not fully understood. In this study, a series of mutants that lack one or more major components associated with the cell envelope were constructed from Escherichia coli K-12 W3110. WJW02 can only synthesize Kdo 2 -lipid A which lacks the core oligosaccharide portion of lipopolysaccharide. WJW04, WJW07 and WJW08 were constructed from WJW02 by deleting the gene clusters relevant to the biosynthesis of exopolysaccharide, flagella and fimbria, respectively. WJW09, WJW010 and WJW011 cells cannot synthesize exopolysaccharide, flagella and fimbria, respectively. Comparing to the wild type W3110, mutants WJW02, WJW04, WJW07 and WJW08 cells showed decreased resistance to more than 10 different antibacterial drugs, but not the mutants WJW09, WJW010 and WJW011. This indicates that the core oligosaccharide portion of lipopolysaccharide plays important roles on multiple antibiotic resistance in E. coli and the 1 st heptose in core oligosaccharide portion is critical. Furthermore, the removal of the core oligosaccharide of LPS leads to influences on cell wall morphology, cell phenotypes, porins, efflux systems, and the respond behaviors to antibiotic stimulation. The results demonstrated the important role of lipopolysaccharide on the antibiotic resistance of Gram-negative bacteria.


2016 ◽  
Vol 198 (14) ◽  
pp. 1984-1992 ◽  
Author(s):  
Tara F. Mahoney ◽  
Dante P. Ricci ◽  
Thomas J. Silhavy

ABSTRACTThe biogenesis of the outer membrane (OM) ofEscherichia coliis a conserved and vital process. The assembly of integral β-barrel outer membrane proteins (OMPs), which represent a major component of the OM, depends on periplasmic chaperones and the heteropentameric β-barrel assembly machine (Bam complex) in the OM. However, not all OMPs are affected by null mutations in the same chaperones or nonessential Bam complex members, suggesting there are categories of substrates with divergent requirements for efficient assembly. We have previously demonstrated two classes of substrates, one comprising large, low-abundance, and difficult-to-assemble substrates that are heavily dependent on SurA and also Skp and FkpA, and the other comprising relatively simple and abundant substrates that are not as dependent on SurA but are strongly dependent on BamB for assembly. Here, we describe novel mutations inbamDthat lower levels of BamD 10-fold and >25-fold without altering the sequence of the mature protein. We utilized these mutations, as well as a previously characterized mutation that lowers wild-type BamA levels, to reveal a third class of substrates. These mutations preferentially cause a marked decrease in the levels of multimeric proteins. This susceptibility of multimers to lowered quantities of Bam machines in the cell may indicate that multiple Bam complexes are needed to efficiently assemble multimeric proteins into the OM.IMPORTANCEThe outer membrane (OM) of Gram-negative bacteria, such asEscherichia coli, serves as a selective permeability barrier that prevents the uptake of toxic molecules and antibiotics. Integral β-barrel proteins (OMPs) are assembled by the β-barrel assembly machine (Bam), components of which are conserved in mitochondria, chloroplasts, and all Gram-negative bacteria, including many clinically relevant pathogenic species. Bam is essential for OM biogenesis and accommodates a diverse array of client proteins; however, a mechanistic model that accounts for the selectivity and broad substrate range of Bam is lacking. Here, we show that the assembly of multimeric OMPs is more strongly affected than that of monomeric OMPs when essential Bam complex components are limiting, suggesting that multiple Bam complexes are needed to assemble multimeric proteins.


mBio ◽  
2021 ◽  
Author(s):  
Nicholas P. Greene ◽  
Vassilis Koronakis

In Escherichia coli and other Gram-negative bacteria, tripartite efflux pumps (TEPs) span the entire cell envelope and serve to remove noxious molecules from the cell. CusBCA is a TEP responsible for copper and silver detoxification in E. coli powered by the resistance-nodulation-cell division (RND) transporter, CusA.


2018 ◽  
Vol 115 (28) ◽  
pp. E6614-E6621 ◽  
Author(s):  
Anna Konovalova ◽  
Marcin Grabowicz ◽  
Carl J. Balibar ◽  
Juliana C. Malinverni ◽  
Ronald E. Painter ◽  
...  

The outer membrane (OM) of Gram-negative bacteria forms a robust permeability barrier that blocks entry of toxins and antibiotics. Most OM proteins (OMPs) assume a β-barrel fold, and some form aqueous channels for nutrient uptake and efflux of intracellular toxins. The Bam machine catalyzes rapid folding and assembly of OMPs. Fidelity of OMP biogenesis is monitored by the σE stress response. When OMP folding defects arise, the proteases DegS and RseP act sequentially to liberate σE into the cytosol, enabling it to activate transcription of the stress regulon. Here, we identify batimastat as a selective inhibitor of RseP that causes a lethal decrease in σE activity in Escherichia coli, and we further identify RseP mutants that are insensitive to inhibition and confer resistance. Remarkably, batimastat treatment allows the capture of elusive intermediates in the OMP biogenesis pathway and offers opportunities to better understand the underlying basis for σE essentiality.


2016 ◽  
Vol 198 (16) ◽  
pp. 2192-2203 ◽  
Author(s):  
Alessandra M. Martorana ◽  
Mattia Benedet ◽  
Elisa A. Maccagni ◽  
Paola Sperandeo ◽  
Riccardo Villa ◽  
...  

ABSTRACTThe assembly of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) requires the transenvelope Lpt (lipopolysaccharide transport) complex, made inEscherichia coliof seven essential proteins located in the inner membrane (IM) (LptBCFG), periplasm (LptA), and OM (LptDE). At the IM, LptBFG constitute an unusual ATP binding cassette (ABC) transporter, composed by the transmembrane LptFG proteins and the cytoplasmic LptB ATPase, which is thought to extract LPS from the IM and to provide the energy for its export across the periplasm to the cell surface. LptC is a small IM bitopic protein that binds to LptBFG and recruits LptA via its N- and C-terminal regions, and its role in LPS export is not completely understood. Here, we show that the expression level oflptBis a critical factor for suppressing lethality of deletions in the C-terminal region of LptC and the functioning of a hybrid Lpt machinery that carriesPa-LptC, the highly divergent LptC orthologue fromPseudomonas aeruginosa. We found that LptB overexpression stabilizes C-terminally truncated LptC mutant proteins, thereby allowing the formation of a sufficient amount of stable IM complexes to support growth. Moreover, the LptB level seems also critical for the assembly of IM complexes carryingPa-LptC which is otherwise defective in interactions with theE. coliLptFG components. Overall, our data suggest that LptB and LptC functionally interact and support a model whereby LptB plays a key role in the assembly of the Lpt machinery.IMPORTANCEThe asymmetric outer membrane (OM) of Gram-negative bacteria contains in its outer leaflet an unusual glycolipid, the lipopolysaccharide (LPS). LPS largely contributes to the peculiar permeability barrier properties of the OM that prevent the entry of many antibiotics, thus making Gram-negative pathogens difficult to treat. InEscherichia colithe LPS transporter (the Lpt machine) is made of seven essential proteins (LptABCDEFG) that form a transenvelope complex. Here, we show that increased expression of the membrane-associated ABC protein LptB can suppress defects of LptC, which participates in the formation of the periplasmic bridge. This reveals functional interactions between these two components and supports a role of LptB in the assembly of the Lpt machine.


2020 ◽  
Author(s):  
Jacqueline Grimm ◽  
Handuo Shi ◽  
Wei Wang ◽  
Angela M. Mitchell ◽  
Ned S. Wingreen ◽  
...  

AbstractThe outer membrane (OM) of Gram-negative bacteria is a selective permeability barrier that allows uptake of nutrients while simultaneously protecting the cell from harmful compounds. The basic pathways and molecular machinery responsible for transporting lipopolysaccharides (LPS), lipoproteins, and β-barrel proteins to the OM have been identified, but very little is known about phospholipid (PL) transport. To identify genes capable of affecting PL transport, we screened for genetic interactions with mlaA*, a mutant in which anterograde PL transport causes the inner membrane (IM) to shrink and eventually rupture; characterization of mlaA*-mediated lysis suggested that PL transport can occur via a high-flux, diffusive flow mechanism. We found that YhdP, an IM protein involved in maintaining the OM permeability barrier, modulates the rate of PL transport during mlaA*-mediated lysis. Deletion of yhdP from mlaA* reduced the rate of IM transport to the OM by 50%, slowing shrinkage of the IM and delaying lysis. As a result, the weakened OM of ΔydhP cells was further compromised and ruptured before the IM during mlaA*-mediated death. These findings demonstrate the existence of a high-flux, diffusive pathway for PL flow in Escherichia coli that is modulated by YhdP.Significance StatementThe outer membrane (OM) of Gram-negative bacteria serves as a barrier that protects cells from harmful chemical compounds, including many antibiotics. Understanding how bacteria build this barrier is an important step in engineering strategies to circumvent it. A long-standing mystery in the field is how phospholipids (PLs) are transported from the inner membrane (IM) to the OM. We previously discovered that a mutation in the gene mlaA causes rapid flow of PLs to the OM, eventually resulting in IM rupture. Here, we found that deletion of the gene yhdP delayed cell death in the mlaA mutant by slowing flow of PLs to the OM. These findings reveal a high-flux, diffusive pathway for PL transport in Gram-negative bacteria modulated by YhdP.


Sign in / Sign up

Export Citation Format

Share Document