scholarly journals Simultaneous Screening and Quantification of 29 Drugs of Abuse in Oral Fluid by Solid-Phase Extraction and Ultraperformance LC-MS/MS

2009 ◽  
Vol 55 (11) ◽  
pp. 2004-2018 ◽  
Author(s):  
Nora Badawi ◽  
Kirsten Wiese Simonsen ◽  
Anni Steentoft ◽  
Inger Marie Bernhoft ◽  
Kristian Linnet

Abstract Background: The European DRUID (Driving under the Influence of Drugs, Alcohol And Medicines) project calls for analysis of oral fluid (OF) samples, collected randomly and anonymously at the roadside from drivers in Denmark throughout 2008–2009. To analyze these samples we developed an ultra performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) method for detection of 29 drugs and illicit compounds in OF. The drugs detected were opioids, amphetamines, cocaine, benzodiazepines, and Δ-9-tetrahydrocannabinol. Method: Solid-phase extraction was performed with a Gilson ASPEC XL4 system equipped with Bond Elut Certify sample cartridges. OF samples (200 mg) diluted with 5 mL of ammonium acetate/methanol (vol/vol 90:10) buffer were applied to the columns and eluted with 3 mL of acetonitrile with aqueous ammonium hydroxide. Target drugs were quantified by use of a Waters ACQUITY UPLC system coupled to a Waters Quattro Premier XE triple quadrupole (positive electrospray ionization mode, multiple reaction monitoring mode). Results: Extraction recoveries were 36%–114% for all analytes, including Δ-9-tetrahydrocannabinol and benzoylecgonine. The lower limit of quantification was 0.5 μg/kg for all analytes. Total imprecision (CV) was 5.9%–19.4%. With the use of deuterated internal standards for most compounds, the performance of the method was not influenced by matrix effects. A preliminary account of OF samples collected at the roadside showed the presence of amphetamine, cocaine, codeine, Δ-9-tetrahydrocannabinol, tramadol, and zopiclone. Conclusions: The UPLC-MS/MS method makes it possible to detect all 29 analytes in 1 chromatographic run (15 min), including Δ-9-tetrahydrocannabinol and benzoylecgonine, which previously have been difficult to incorporate into multicomponent methods.

2013 ◽  
Vol 59 (12) ◽  
pp. 1780-1789 ◽  
Author(s):  
Sarah K Himes ◽  
Karl B Scheidweiler ◽  
Olof Beck ◽  
David A Gorelick ◽  
Nathalie A Desrosiers ◽  
...  

BACKGROUND Δ9-Tetrahydrocannabinol (THC), 11-nor-9-carboxy-THC (THCCOOH), and cannabinol (CBN) were measured in breath following controlled cannabis smoking to characterize the time course and windows of detection of breath cannabinoids. METHODS Exhaled breath was collected from chronic (≥4 times per week) and occasional (<twice per week) smokers before and after smoking a 6.8% THC cigarette. Sample analysis included methanol extraction from breath pads, solid-phase extraction, and liquid chromatography–tandem mass spectrometry quantification. RESULTS THC was the major cannabinoid in breath; no sample contained THCCOOH and only 1 contained CBN. Among chronic smokers (n = 13), all breath samples were positive for THC at 0.89 h, 76.9% at 1.38 h, and 53.8% at 2.38 h, and only 1 sample was positive at 4.2 h after smoking. Among occasional smokers (n = 11), 90.9% of breath samples were THC-positive at 0.95 h and 63.6% at 1.49 h. One occasional smoker had no detectable THC. Analyte recovery from breath pads by methanolic extraction was 84.2%–97.4%. Limits of quantification were 50 pg/pad for THC and CBN and 100 pg/pad for THCCOOH. Solid-phase extraction efficiency was 46.6%–52.1% (THC) and 76.3%–83.8% (THCCOOH, CBN). Matrix effects were −34.6% to 12.3%. Cannabinoids fortified onto breath pads were stable (≤18.2% concentration change) for 8 h at room temperature and −20°C storage for 6 months. CONCLUSIONS Breath may offer an alternative matrix for identifying recent driving under the influence of cannabis, but currently sensitivity is limited to a short detection window (0.5–2 h).


2019 ◽  
Vol 15 (7) ◽  
pp. 776-784
Author(s):  
Xiaonian Han ◽  
Jing Wang ◽  
Jing Huang ◽  
Lirong Peng

Background: As first-line treatments for diabetes, sitagliptin and metformin have been widely prescribed as a combination to enhance the therapeutic effect. Objective: To establish a methodology to simultaneously monitor the two drugs in vivo by a reversedphase Liquid Chromatography-Tandem Mass Spectrometric (LC-MS/MS) method. Methods: The two drugs were extracted from 50 μl human plasma by ion-pair solid phase extraction. The separation of the plasma samples was implemented on an Agilent Zorbax SB-CN column (150×4.6 mm, 5.0 µm). The mobile phase was the mixture (80:20, v/v) of methanol and 5.0 mM ammonium formate in water (pH 4.5). An ion trap spectrometer equipped with an electrospray ionization source was utilized to detect the elution in positive mode. Quantification of the analytes was achieved by Multiple Reaction Monitoring (MRM) using the transitions of m/z 408.3→235.1 for sitagliptin and m/z 130.1→ 60.2 for metformin. Results: Sitagliptin and metformin demonstrated good linearity among the range of 1.00-1000 ng/mL and 5.00-4000 ng/mL. The intra-day and inter-day investigations displayed precisions of ≤ 3.6% and an accuracy range of -7.5% to 6.0% for the two drugs. The mean recovery of the two drugs was 96.0% and 98.5%. Under mandatory storage conditions, both the drugs gave an acceptable stability. The throughput of the assay was found to be more than 100 plasma samples per day ascribed to the run time of 3.0 min for each sample. Conclusion: The developed method was successfully applied to a pharmacokinetic study for a fixeddose tablet formulation containing 50 mg sitagliptin and 500 mg metformin in 12 healthy volunteers.


2020 ◽  
Vol 16 (4) ◽  
pp. 436-446
Author(s):  
Vallerie A. Muckoya ◽  
Philiswa N. Nomngongo ◽  
Jane C. Ngila

Background: Parabens are synthetic esters used extensively as preservatives and/or bactericides in personal care personal products. Objective: Development and validation of a novel robust chemometric assisted analytical technique with superior analytical performances for the determination of ethylparaben, methylparaben and propylparaben, using simulated wastewater matrix. Methods: An automated Solid Phase Extraction (SPE) method coupled with liquid chromatographymass spectrometry was applied in this study. A gradient elution programme comprising of 0.1% formic acid in deionised water (A) and 0.1% formic acid in Methanol (B) was employed on a 100 x 2.1 mm, 3.0 μm a particle size biphenyl column. Two-level (2k) full factorial design coupled with response surface methodology was used for optimisation and investigation of SPE experimental variables that had the most significant outcome of the analytical response. Results: According to the analysis of variance (ANOVA), sample pH and eluent volume were statistically the most significant parameters. The method developed was validated for accuracy, precision, Limits of Detection (LOD) and Limit of Quantification (LOQ) and linearity. The LOD and LOQ established under those optimised conditions varied between 0.04-0.12 μgL−1 and 0.14-0.40 μgL−1 respectively. The use of matrix-matched external calibration provided extraction recoveries between 78-128% with relative standard deviations at 2-11% for two spike levels (10 and 100 μgL-1) in three different water matrices (simulated wastewater, influent and effluent water). Conclusion: The newly developed method was applied successfully to the analyses of parabens in wastewater samples at different sampling points of a wastewater treatment plant, revealing concentrations of up to 3 μgL−1.


2020 ◽  
Vol 35 (4) ◽  
pp. 577-588
Author(s):  
Sebastian España Orozco ◽  
Philipp Zeitlinger ◽  
Karin Fackler ◽  
Robert H. Bischof ◽  
Antje Potthast

AbstractThe extraction of lipophilic wood extractives from pulp and paper process waters proves to be a challenging task, due to harsh and alternating process and sample conditions. This study has determined the potential use of polymeric sorbents for solid-phase extraction (SPE) and compared to classical silica-based reversed-phase packed columns, with polymeric hydrophilic-lipophilic balanced (HLB) cartridges being the sorbent with the most potential. Recovery functions were obtained with an internal standard mixture representative for the main lipophilic wood extractive groups, which are fatty acids and alcohols, sterols, sterol esters and triglycerides. The impact of pH, sample volume and sample matrix, expressed as TOC and cations, on the retention behavior of lipophilic extractives during SPE of industrial samples were determined with polymeric HLB sorbent. High variations in the composition of pulp mill matrices led to different optimal extraction conditions. Thus, a new SPE protocol was developed, which bypasses matrix interferences and omits the loss of analytes due to sample preparation. The method is applicable to different pulp mill effluents with large discrepancies in pH and sample matrices, resulting in recoveries >90 % with RSD <5 % for all lipophilic wood extractives.


2012 ◽  
Vol 33 (8) ◽  
pp. 740-745 ◽  
Author(s):  
Purificación Fernández ◽  
Santiago Seoane ◽  
Cristina Vázquez ◽  
María Jesús Tabernero ◽  
Antonia M. Carro ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Bjoern B. Burckhardt ◽  
Stephanie Laeer

In USA and Europe, medicines agencies force the development of child-appropriate medications and intend to increase the availability of information on the pediatric use. This asks for bioanalytical methods which are able to deal with small sample volumes as the trial-related blood lost is very restricted in children. Broadly used HPLC-MS/MS, being able to cope with small volumes, is susceptible to matrix effects. The latter restrains the precise drug quantification through, for example, causing signal suppression. Sophisticated sample preparation and purification utilizing solid-phase extraction was applied to reduce and control matrix effects. A scale-up from vacuum manifold to positive pressure manifold was conducted to meet the demands of high-throughput within a clinical setting. Faced challenges, advances, and experiences in solid-phase extraction are exemplarily presented on the basis of the bioanalytical method development and validation of low-volume samples (50 μL serum). Enalapril, enalaprilat, and benazepril served as sample drugs. The applied sample preparation and extraction successfully reduced the absolute and relative matrix effect to comply with international guidelines. Recoveries ranged from 77 to 104% for enalapril and from 93 to 118% for enalaprilat. The bioanalytical method comprising sample extraction by solid-phase extraction was fully validated according to FDA and EMA bioanalytical guidelines and was used in a Phase I study in 24 volunteers.


2018 ◽  
pp. 43-47
Author(s):  
M. A. Savchenko

Gidazepam as benzodiazepine derivative is drugs of abuse and is object of toxicological research. The first phases of analysis of analite is its insulating from biological objects. In a case of gidazepam such analites is its metabolites. One of insulating method which used in analytical toxicology is the method of solid-phase extraction (SPE). This method have advantage in comparison with is liquid extraction. However papers about studying of insulating efficiency gidazepam and its metabolites of SPE are absent now. Thus the purpose of the this paper is a study of applications of SPE in analytical toxicology. For work SPE columns Bond Elut Certify have been used (volume 3 mL, amount of a sorbent 130 mg), production of Agilent Technologies. The SPE protocols which studying have been optimised under these columns for extraction from blood and urine. Two procedures are developed for extraction in case of the general screening of an unknown drug, and two for screening of benzodiazepines. Showed that degree of extraction of the basic gidazepam`s metabolites compounds 92–98%, and for gidazepam 51–74%. Also it is positioned that acetonitrile in solutions for removal coextractive substance considerably depresses degree of extraction one of gidazeam`s metabolite. At the same time application of 1 М acetic acid promotes retention of gidazepam and its metabolites on a SPE column in the course of removal lipophilic impurities by organic solvents. Position of gidazepam and its metabolites in the schema of the general screening of an unknown drug in both SPE screening procedures is showed.


2008 ◽  
Vol 20 (3) ◽  
pp. 145-153 ◽  
Author(s):  
Eunmi Kim ◽  
Juseon Lee ◽  
Hyeyoung Choi ◽  
Eunyoung Han ◽  
Yonghoon Park ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6163
Author(s):  
Aree Choodum ◽  
Nareumon Lamthornkit ◽  
Chanita Boonkanon ◽  
Tarawee Taweekarn ◽  
Kharittha Phatthanawiwat ◽  
...  

Benzo(a)pyrene (BaP) has been recognized as a marker for the detection of carcinogenic polycyclic aromatic hydrocarbons. In this work, a novel monolithic solid-phase extraction (SPE) sorbent based on graphene oxide nanoparticles (GO) in starch-based cryogel composite (GO-Cry) was successfully prepared for BaP analysis. Rice flour and tapioca starch (gel precursors) were gelatinized in limewater (cross-linker) under alkaline conditions before addition of GO (filler) that can increase the ability to extract BaP up to 2.6-fold. BaP analysis had a linear range of 10 to 1000 µgL−1 with good linearity (R2 = 0.9971) and high sensitivity (4.1 ± 0.1 a.u./(µgL−1)). The limit of detection and limit of quantification were 4.21 ± 0.06 and 14.04 ± 0.19 µgL−1, respectively, with excellent precision (0.17 to 2.45%RSD). The accuracy in terms of recovery from spiked samples was in the range of 84 to 110% with no significant difference to a C18 cartridge. GO-Cry can be reproducibly prepared with 2.8%RSD from 4 lots and can be reused at least 10 times, which not only helps reduce the analysis costs (~0.41USD per analysis), but also reduces the resultant waste to the environment.


2008 ◽  
Vol 91 (6) ◽  
pp. 1459-1466 ◽  
Author(s):  
Ji-Ye Hu ◽  
Yu-Chao Zhang ◽  
Hai Yan

Abstract A method for high-performance liquid chromatographic (HPLC) determination of flumorph residues in cucumber, tomato, soil, and natural water was developed and validated. Primary secondary amine or octadecylsilyl (C18) solid-phase extraction cartridges were used for sample preparation. Reversed-phase HPLC with UV detection was used for separation and quantification of the pesticide. The combined cleanup and chromatographic method steps were sensitive and reliable for simultaneous determination of residues of the 2 isomers of flumorph in the studied samples. This method is characterized by recovery &gt;97.9, coefficient of variation &lt;6.2, and limit of quantification of 0.01 mg/kg, in agreement with directives for method validation in residue analysis. Flumorph residues in the samples were further confirmed by HPLC/mass spectrometry. The proposed method is fast, easy to perform, and could be used for monitoring of pesticide residues.


Sign in / Sign up

Export Citation Format

Share Document