Does dietary ginger rhizome (Zingiber officinale) supplementation improve the performance, intestinal morphology and microflora population, carcass traits and serum metabolites in Japanese quail?

2015 ◽  
Author(s):  
M. Salmanzadeh

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Tchoffo Herve ◽  
Kana Jean Raphaël ◽  
Ngoula Ferdinand ◽  
Ngoumtsop Victor Herman ◽  
Ngouozeu Moyo Willy Marvel ◽  
...  

This study aimed to investigate the effect of ginger (Zingiber officinale, Rosc.) essential oil on growth and laying performances, egg yolk antioxidant and cholesterol status, and serum metabolites in Japanese quail. Eighty 3-week-old Japanese quails weighing between 120 and 130 g were equally and randomly assigned to four groups receiving daily and orally, respectively, 100 µl/kg body weight (bw) distilled water and 50, 100, and 150 µl/kg bw of ginger rhizomes essential oil, respectively. The entire feeding trial for all groups lasted for 9 weeks and the Z. officinale essential oil effects were studied on growth and laying performances, serum metabolites, and egg yolk antioxidant and cholesterol status. Results revealed that feed intake, live and body weights gain, feed conversion ratio, egg production, and weekly mass of eggs were not significantly (P>0.05) influenced by oral administration of ginger rhizomes essential oil. Unlike the abdominal fat weight which decreased significantly (p<0.05) in all treated quails, the oral administration of ginger rhizomes essential oil had no significant effects (p> 0.05) on liver, intestine, heart, and gizzard relative weights as compared to the control. Egg weight markedly (P<0.05) increased in Japanese quails treated with ginger rhizomes essential oil whatever the dose with reference to the control. The serum content in total cholesterol, LDL-cholesterol, and transaminases (AST and ALT) decreased significantly (P<0.05) with 100 and 150 µl/kg bw of ginger rhizomes essential oil compared to control group. In conclusion, oral administration of 100 to 150 µl/kg bw of ginger rhizomes essential oil to laying Japanese quails positively influences egg weight and decreased serum and egg cholesterols without any adverse effect on feed intake and body weight gain.







2021 ◽  
Vol 12 ◽  
Author(s):  
Huanfang Liu ◽  
Honghua Yang ◽  
Tong Zhao ◽  
Canjia Lin ◽  
Yongqing Li ◽  
...  

Ginger (Zingiber officinale Roscoe) is known for its unique pungent taste and useability in traditional Chinese medicine. The main compounds in ginger rhizome can be classified as gingerols, diarylheptanoids, and volatile oils. The composition and concentrations of the bioactive compounds in ginger rhizome might vary according to the age of the rhizome. In this regard, the knowledge on the transcriptomic signatures and accumulation of metabolites in young (Y), mature (M), and old (O) ginger rhizomes is scarce. This study used HiSeq Illumina Sequencing and UPLC-MS/MS analyses to delineate how the expression of key genes changes in Y, M, and O ginger rhizome tissues and how it affects the accumulation of metabolites in key pathways. The transcriptome sequencing identified 238,157 genes of which 13,976, 11,243, and 24,498 were differentially expressed (DEGs) in Y vs. M, M vs. O, and Y vs. O, respectively. These DEGs were significantly enriched in stilbenoid, diarylheptanoid, and gingerol biosynthesis, phenylpropanoid biosynthesis, plant-hormone signal transduction, starch and sucrose metabolism, linoleic acid metabolism, and α-linoleic acid metabolism pathways. The metabolome profiling identified 661 metabolites of which 311, 386, and 296 metabolites were differentially accumulated in Y vs. M, Y vs. O, and M vs. O, respectively. These metabolites were also enriched in the pathways mentioned above. The DEGs and DAMs enrichment showed that the gingerol content is higher in Y rhizome, whereas the Y, M, and O tissues differ in linoleic and α-linoleic acid accumulation. Similarly, the starch and sucrose metabolism pathway is variably regulated in Y, M, and O rhizome tissues. Our results showed that ginger rhizome growth slows down (Y &gt; M &gt; O) probably due to changes in phytohormone signaling. Young ginger rhizome is the most transcriptionally and metabolically active tissue as compared to M and O. The transitioning from Y to M and O affects the gingerol, sugars, linoleic acid, and α-linoleic acid concentrations and related gene expressions.



Plant Disease ◽  
2021 ◽  
Author(s):  
Paul Daly ◽  
Yifan Chen ◽  
Qimeng Zhang ◽  
Hongli Zhu ◽  
Jingjing Li ◽  
...  

Pythium soft rot is a major soil-borne disease of crops such as ginger (Zingiber officinale). Our objective was to identify which Pythium species were associated with Pythium soft-rot of ginger in China, where approximately 20% of global ginger production is from. Oomycetes infecting ginger rhizomes from seven provinces were investigated using two molecular markers, the internal transcribed spacer (ITS) and cytochrome c oxidase subunit II (CoxII). In total, 81 isolates were recovered and approximately 95% of the isolates were identified as Pythium myriotylum and the other isolates were identified as either P. aphanidermatum or P. graminicola. Notably, the P. myriotylum isolates from China did not contain the SNP in the CoxII sequence found previously in the P. myriotylum isolates infecting ginger in Australia. A subset of 36 of the isolates was analyzed repeatedly by temperature-dependent growth, severity of disease on ginger plants and aggressiveness of colonization of ginger rhizome sticks. In the pathogenicity assays, 32/36 of the isolates were able to significantly infect and cause severe disease symptoms on the ginger plants. A range of temperature-dependent growth, disease severity and aggressiveness in colonization was found with a significant moderate positive correlation between growth and aggressiveness of colonization of the ginger sticks. This study identified P. myriotylum as the major oomycete pathogen in China from infected ginger rhizomes and suggests that P. myriotylum should be a key target to control soft rot of ginger disease.



2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Asmaa R. Abd El-Hameid ◽  
Zakia A. Abo El-kheir ◽  
M. S. Abdel-Hady ◽  
Wafaa A. Helmy




Sign in / Sign up

Export Citation Format

Share Document