scholarly journals A Sensitivity Study of WRF Model Simulations to Nudging Methods for A Yeongdong Heavy Snowfall Event

Atmosphere ◽  
2015 ◽  
Vol 25 (1) ◽  
pp. 99-115 ◽  
Author(s):  
Ji Won Choi ◽  
Jae Gyoo Lee
2021 ◽  
pp. 101229
Author(s):  
Huidong Li ◽  
Björn Claremar ◽  
Lichuan Wu ◽  
Christoffer Hallgren ◽  
Heiner Körnich ◽  
...  

Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 378 ◽  
Author(s):  
Channa Rodrigo ◽  
Sangil Kim ◽  
Il Jung

This study aimed to determine the predictability of the Weather Research and Forecasting (WRF) model with different model physics options to identify the best set of physics parameters for predicting heavy rainfall events during the southwest and northeast monsoon seasons. Two case studies were used for the evaluation: heavy precipitation during the southwest monsoon associated with the simultaneous onset of the monsoon, and a low pressure system over the southwest Bay of Bengal that produced heavy rain over most of the country, with heavy precipitation associated with the northeast monsoon associated with monsoon flow and easterly disturbances. The modeling results showed large variation in the rainfall estimated by the model using the various model physics schemes, but several corresponding rainfall simulations were produced with spatial distribution aligned with rainfall station data, although the amount was not estimated accurately. Moreover, the WRF model was able to capture the rainfall patterns of these events in Sri Lanka, suggesting that the model has potential for operational use in numerical weather prediction in Sri Lanka.


2016 ◽  
Vol 41 (3) ◽  
pp. 193-198 ◽  
Author(s):  
N. A. Kalinin ◽  
A. L. Vetrov ◽  
E. V. Pishchal’nikova ◽  
E. M. Sviyazov ◽  
A. N. Shikhov
Keyword(s):  

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1177
Author(s):  
Diana Arteaga ◽  
Céline Planche ◽  
Christina Kagkara ◽  
Wolfram Wobrock ◽  
Sandra Banson ◽  
...  

The Mediterranean region is frequently affected in autumn by heavy precipitation that causes flash-floods or landslides leading to important material damage and casualties. Within the framework of the international HyMeX program (HYdrological cycle in Mediterranean EXperiment), this study aims to evaluate the capabilities of two models, WRF (Weather Research and Forecasting) and DESCAM (DEtailed SCAvenging Model), which use two different representations of the microphysics to reproduce the observed atmospheric properties (thermodynamics, wind fields, radar reflectivities and precipitation features) of the HyMeX-IOP7a intense precipitating event (26 September 2012). The DESCAM model, which uses a bin resolved representation of the microphysics, shows results comparable to the observations for the precipitation field at the surface. On the contrary, the simulations made with the WRF model using a bulk representation of the microphysics (either the Thompson scheme or the Morrison scheme), commonly employed in NWP models, reproduce neither the intensity nor the distribution of the observed precipitation—the rain amount is overestimated and the most intense cell is shifted to the East. The different simulation results show that the divergence in the surface precipitation features seems to be due to different mechanisms involved in the onset of the precipitating system: the convective system is triggered by the topography of the Cévennes mountains (i.e., south-eastern part of the Massif Central) in DESCAM and by a low-level flux convergence in WRF. A sensitivity study indicates that the microphysics properties have impacted the thermodynamics and dynamics fields inducing the low-level wind convergence simulated with WRF for this HyMeX event.


2018 ◽  
Vol 22 (3) ◽  
pp. 1-25 ◽  
Author(s):  
Daniel Brown ◽  
Gerhard Reuter

Abstract The Athabasca oil sands development has created a land surface disturbance of almost 900 km2 in northeastern Alberta. Both through industrial processes and the removal of boreal forest vegetation, this surface disturbance impacts meteorology in the vicinity by releasing waste heat, raising the surface temperature, and lowering the surface humidity. To investigate the effects of the Athabasca oil sands development on thunderstorm intensity, initiation time, and duration, the Weather Research and Forecasting (WRF) Model was employed to simulate the effect of the surface disturbance on atmospheric conditions on 10 case study days. The results suggested the oil sands surface disturbance was not associated with substantial increases in thunderstorm intensity on any of the case study days. On two case study days, however, the WRF Model simulations differed substantially from the observed meteorological conditions and only approached the observations when the oil sands surface disturbance was included in the model simulation. Including the oil sands surface disturbance in the model simulations resulted in thunderstorm initiation about 2 h earlier and increased thunderstorm duration. Data from commercial aircraft showed that the 850–500-mb temperature difference was greater than 30°C (very unstable) only on these 2 days. Such cases are sufficiently rare that they are not expected to affect the overall thunderstorm climatology. Still, in these very unstable cases, the oil sands development appears to have a significant effect on thunderstorm initiation time and duration.


Heliyon ◽  
2019 ◽  
Vol 5 (9) ◽  
pp. e02469 ◽  
Author(s):  
Achenafi Teklay ◽  
Yihun T. Dile ◽  
Dereje H. Asfaw ◽  
Haimanote K. Bayabil ◽  
Kibruyesfa Sisay

Sign in / Sign up

Export Citation Format

Share Document