scholarly journals FASIES DAN LINGKUNGAN PENGENDAPAN FORMASI KANIKEH, CEKUNGAN BULA, MALUKU

2020 ◽  
Vol 30 (2) ◽  
pp. 171
Author(s):  
Akhmad Khahlil Gibran ◽  
Aries Kusworo

Batuan silisiklastik berumur Trias yaitu Formasi Kanikeh, tersebar di Pulau Seram hingga Pulau Kesui dan Teor dari Maluku hingga Maluku Tenggara. Formasi Kanikeh telah lama dikenal memiliki karakteristik batuan induk yang baik. Pemahaman tentang Formasi Kanikeh masih minim, interpretasi lingkungan pengendapan dan korelasi stratigrafi masih ada perbedaan. Tujuan penelitian ini adalah mendapatkan hasil interpretasi lingkungan pengendapan berdasarkan data terbaru. Metode yang digunakan dalam penelitian ini adalah pengukuran penampang stratigrafi pada empat lintasan pengamatan di daerah Seram Bagian Timur dengan menggunakan pendekatan analisis litofasies dan asosiasi fasies. Hasil dari penelitian ini menunjukkan adanya 9 litofasies, yaitu: Litofasies Batupasir Konglomeratan (Sg); Litofasies Batupasir Lapisan Silangsiur Mangkok (Sp); Litofasies Batupasir Bioturbasi (Sb); Litofasies Batupasir Karbonan (Sc); Litofasies Batupasir Bergelombang (Sw); Litofasies Batupasir Flasser (Sf); Litofasies Batupasir Laminasi Sejajar (Sh); Litofasies Batulumpur Lenticular (Fl); Litofasies Batulumpur Berlapis (Fsc). Deskripsi litofasies tersebut termasuk ke dalam suatu sistem pengendapan pasang-surut (intertidal) yaitu tidal channel, tidal sand flat, tidal sand-mud mixed flat, dan tidal mudflat. Formasi Kanikeh terendapkan dengan sistem pengendapan batuan silisiklastik yang dipengaruhi oleh arus pasang-surut pada lingkungan pengendapan transisi. ABSTRACT - Facies and depositional environment of Kanikeh Formation, Bula Basin, Maluku. The Triassic siliciclastic rocks, Kanikeh Formation are spread across Seram, Kesui, and Teor Island from Molucca to Southeast Molucca. The Kanikeh formation has been known as an excellent source rock. However, its interpretation of the depositional environment and stratigraphic correlation are still poorly understood. This study aims to give a better understanding of the depositional environment. This study consists of Lithofacies descriptions and facies associations of four stratigraphy measuring sections in Eastern Seram Island. The results of this study indicate that there are 9 lithofacies, including conglomeratic sandstone (Sc); Through cross bed sandstone (Sp); Bioturbated sandstone (Sb); Carboniferous sandstone (Sc); Wavy Sandstone (Sw); Flasser Sandstone (Sf); parallel laminated sandstone (Sh); lenticular mudstone (Fl); dan laminated mudstone (Fsc). The lithofacies description is included in four facies associations which are included in a tidal deposition system (intertidal) there are tidal channels, tidal sand flat, tidal sand-mud mixed flat, dan tidal mudflat. Based on the results Kanikeh Formation is deposited with a siliciclastic deposition system influenced by tidal currents within transition deposition environments.

2021 ◽  
Vol 325 ◽  
pp. 08013
Author(s):  
Mawar Towan Lestari Ramli ◽  
Hendra Amijaya ◽  
Akmaluddin

Research on the Late Miocene of Pandua Formation shale in Andowia area, Southeast Sulawesi is fundamental because it is considered to have the potential as a source rock in Manui Basin. This study aimed to determine the lithofacies and its potential as petroleum source rock using megascopic, petrographic, and total organic carbon analyses in Pandua Formation shale. Based on the megascopic and petrographic analysis of outcrops, the shale can be subdivided into 11 lithofacies consists of clayey shale, massive claystone, clastic detritus-rich claystone, massive mudstone, mica-rich mudstone, iron oxide-rich mudstone, low-angle laminated mudstone, massive siltstone, carbon-rich massive siltstone, laminated siltstone, and carbon-rich laminated siltstone. The results of the analysis of 19 samples of shale showed that the total organic carbon (TOC) content was classified as poor to excellent (<0.5%- >4%). The lithofacies with a high concentration of TOC are carbon-rich massive siltstone and carbon-rich laminated siltstone. Both lithofacies were categorized as potentially excellent source rock which the TOC value content is 5.78% and 5.74%.The result implies the better understanding of the depositional environment and hydrocarbon accumulation potential of the Manui basin for future exploration.


2020 ◽  
Vol 70 (12) ◽  
pp. 1505-1513
Author(s):  
Tjebbe M. Hepkema ◽  
Huib E. de Swart ◽  
Abdel Nnafie ◽  
George P. Schramkowski ◽  
Henk M. Schuttelaars

AbstractThe role of the Coriolis effect in the initial formation of bottom patterns in a tidal channel is studied by means of a linear stability analysis. The key finding is that the mechanism generating oblique tidal sand ridges on the continental shelf is also present in confined tidal channels. As a result, the Coriolis effect causes the fastest growing pattern to be a combination of tidal bars and oblique tidal sand ridges. Similar as on the continental shelf, the Coriolis-induced torques cause anticyclonic residual circulations around the ridges, which lead to the accumulation of sand above the ridges. Furthermore, an asymptotic analysis indicates that the maximum growth rate of the bottom perturbation is slightly increased by the Coriolis effect, while its preferred wavelength is hardly influenced.


2021 ◽  
Vol 50 (7) ◽  
pp. 1885-1899
Author(s):  
Rakhmat Fakhruddin

A sedimentological and palynological investigation was carried out on outcropping sedimentary rocks at Dogiyai, Papua, proposed to be named as the Mapia Formation. The age range is from Middle Miocene to Pleistocene. The lower Mapia Formation was deposited at Metroxylon type to Nothofagus emarcida Zone, Middle Miocene to Early Pliocene. It is comprised of three facies associations: tidal channel, tidal point bar, and tidal flat deposits. A tidally dominated fluvially influenced depositional environment is suggested for the deposition of sediments of this unit. The upper Mapia Formation was deposited at Malvacipollis diversus Zone, Garcinia cuspidata type Zone, and Proteacidites sp. Zone, Late Pliocene to Pleistocene. It is comprised of five facies associations: delta front, slump, debrite, turbidite, and lacustrine mud deposits. A non-channelized deep-lacustrine slump and debris-flow dominated depositional environment is suggested for the deposition of sediments of this unit. The lower Mapia Formation was deposited as synorogenic clastic sediments at the beginning of Central Range orogeny event while the upper Mapia Formation was deposited in the piggyback basin at the major uplift event.


Terr Plural ◽  
2021 ◽  
Vol 15 ◽  
pp. e2119456
Author(s):  
Elvio Pinto Bosetti ◽  
◽  
Lucinei Jose Myszynski Junior ◽  
Daniel Sedorko ◽  
Luana Oliveira ◽  
...  

The urban area of Ponta Grossa (PR) occurs on one of the most abundant fossiliferous fields in the country, which records an endemic fauna that occurred in the Devonian of the Paraná Basin. The growing urbanization of the city increasingly buries these outcrops, and new works must be accompanied by a specialized team to safeguard the paleontological heritage. This is the case of the Bosque Mistral project, which exposed many layers of the Ponta Grossa Formation, rich in fossils and trace fossils. This study reports the main fossiliferous occurrences in the section, correlates the section with classical outcrops from the literature, and interprets the main depositional environments as well stratigraphic cycles using an integrated analysis of sedimentology and ichnology. The ichnological distribution also evidences the retrogradation pattern, and, particularly, the occurrence of ichnofabrics dominated by Zoophycos at the top of the section is a signature of high-frequency cycles associated with the transgressive systems tract. Macrofossill biodiversity varies according to the facies, in the sandy and silty layers different organisms from the muddy layers occur. In the former, the epibiont fauna (mainly trilobites and brachiopods) is predominant while in the muddy layers the predominance is the endobiont and semi-endobiont fauna (bivalve mollusks and infaunal brachiopods). In other words, the distribution of taxa across the layers is not random.


Author(s):  
Fantina Madricardo ◽  
Giacomo Montereale-Gavazzi ◽  
Marco Sigovini ◽  
Aleksandra Kruss ◽  
Carlotta Toso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document