scholarly journals The Lithofacies of Pandua Formation Shale in the Andowia Area, North Konawe, Southeast Sulawesi and Its potential as Petroleum source rock

2021 ◽  
Vol 325 ◽  
pp. 08013
Author(s):  
Mawar Towan Lestari Ramli ◽  
Hendra Amijaya ◽  
Akmaluddin

Research on the Late Miocene of Pandua Formation shale in Andowia area, Southeast Sulawesi is fundamental because it is considered to have the potential as a source rock in Manui Basin. This study aimed to determine the lithofacies and its potential as petroleum source rock using megascopic, petrographic, and total organic carbon analyses in Pandua Formation shale. Based on the megascopic and petrographic analysis of outcrops, the shale can be subdivided into 11 lithofacies consists of clayey shale, massive claystone, clastic detritus-rich claystone, massive mudstone, mica-rich mudstone, iron oxide-rich mudstone, low-angle laminated mudstone, massive siltstone, carbon-rich massive siltstone, laminated siltstone, and carbon-rich laminated siltstone. The results of the analysis of 19 samples of shale showed that the total organic carbon (TOC) content was classified as poor to excellent (<0.5%- >4%). The lithofacies with a high concentration of TOC are carbon-rich massive siltstone and carbon-rich laminated siltstone. Both lithofacies were categorized as potentially excellent source rock which the TOC value content is 5.78% and 5.74%.The result implies the better understanding of the depositional environment and hydrocarbon accumulation potential of the Manui basin for future exploration.

2019 ◽  
Vol 38 (3) ◽  
pp. 629-653 ◽  
Author(s):  
Jijun Tian ◽  
Chuanzheng Xu ◽  
Xin Li ◽  
Wenfeng Wang ◽  
Wen Lin

Distinguishing the differences of pore characters between different mixed lithofacies shales is helpful for improving shale gas development efficiencies. In this study, the targeted Longmaxi shale ( L1) of the Southern Sichuan Basin was selected as the research object. Two kinds of mixed lithofacies shale were identified by analyzing total organic carbon and X-ray diffraction results. The forming depositional environment of mixed lithofacies shale was researched by elements analyses. Pores in different mixed lithofacies shale were observed using field emission scanning electronic microscope. Low-field nuclear magnetic resonance and low-temperature nitrogen adsorption were conducted to analyze pore characters of different mixed lithofacies shale. The results showed that L1 were mainly composed of organic rich clay–siliceous mixed shales (OR-M-1) and organic extreme rich calcareous–siliceous mixed shales (OER-M-3). OR-M-1 and OER-M-3 were formed in high paleo-producing dysoxic–oxic seawater and anoxic waterbody, respectively. Micro-pore and meso-pore volumes of OER-M-3 were greater than those of OR-M-1 while macro-pore volume of OER-M-3 was lower than that of OR-M-1. Meso-pore surficial and structural complexities of OER-M-3 were greater than those of OR-M-1. OER-M-3 were greater in oil-wetting micro-pore structural complexities while lower in water-wetting micro-pore structural complexities, compared with OR-M-1. The inherent relationships between lithofacies type and sedimentary environment, total organic carbon, as well as pore characters, respectively, were quite close.


2017 ◽  
Vol 13 (3) ◽  
pp. 167
Author(s):  
Husnah Husnah ◽  
Eko Prianto ◽  
Siti Nurul Aida

Sungai Musi merupakan sungai besar mengaliri wilayah Sumatera Selatan, Lampung, dan Bengkulu , dan bervariasi dalam pemanfaatannya, khususnya di bagian hilir, didominasi oleh kegiatan industri yang membuang limbahnya ke Sungai Musi. Kajian pengaruh industri terhadap Sungai Musi telah dilakukan, namun sebatas analisis fisik dan kimia lingkungan dan belum mengarah kepada pengaruhnya terhadap organisme air. Organisme air adalah indikator penting perubahan lingkungan karena organisme khususnya organisme dasar (benthos) menyimpan sejarah proses-proses terjadi di perairan. Riset yang bertujuan untuk mengetahui kualitas perairan Sungai Musi bagian hilir ditinjau dari karakteristik fisik dan kimia dan struktur makrozoobenthos telah dilakukan di Sungai Musi, Sumatera Selatan pada bulan Mei dan September 2006. Riset dilakukan bersifat survei lapangan. Delapan stasiun ditentukan di Sungai Musi bagian hilir berdasarkan pada perbedaan mikrohabitat. Stasiun riset masing masing antara lain Sejagung, Pulokerto, Jembatan Ampera, Sebokor, Pulau Burung, Upang, Pulau Payung, dan Sungsang. Pada masing masing stasiun, dilakukan pengambilan contoh air untuk parameter fisika, kimia, dan makrobenthos. Contoh air diambil dari atas perahu motor pada kedalaman 1,0 m dari permukaan air dengan menggunakan kemmerer water sampler. Sebagian contoh dianalisis di lapangan (suhu, pH, dan oksigen terlarut) dan sebagian lagi yaitu jumlah padatan tersesuspensi (total suspended solids), jumlah padatan terlarut (total dissolved solids), jumlah karbon organik (total organic carbon), organik karbon terlarut (dissolved organic carbon), konsumsi oksigen biologi (biochemical oxygen demand), nitrat, dan fosfat dianalisis di laboratorium kimia. Contoh makrozoobenthos diambil pada 10 titik di masing-masing stasiun, dengan menggunakan ekman dredge dengan bukaan mulut 400 cm2. Contoh makrobenthos pada masingmasing titik tersebut disortir dengan menggunakan saringan dan kemudian digabungkan (dikomposit) dan diawetkan dengan formalin 10%. Data kualitas air dianalisis dengan principle component analysis dan kelimpahan makrozoobenthos dianalisis dengan analisis cluster. Kualitas perairan di Sungai Musi bagian hilir dikelompokkan atas 2 yang mengalami tekanan berat yaitu dari Sejagung sampai dengan Pulau Burung dan tekanan ringan yaitu dari Upang sampai dengan Muara Sungai Musi. Kelompok pertama dicirikan oleh nilai konsentrasi total dissolved solids, total organic carbon, dan dissolved organic carbon yang tinggi diiringi dengan kelimpahan makrozoobenhthos yang rendah serta didominasi oleh Tubifex sp. Kelompok ke-2 dari Upang sampai dengan Muara Sungai Musi dicirikan oleh nilai konsentrasi total suspended solids yang tinggi, dengan kelimpahan makrozoobenthos yang tinggi dan didominasi oleh Gammarus. Musi River is a large river , crossing three provinces, South Sumatra, Lampung and Bengkulu, and differeing in types and levels of its resources ultization, particularly at the down stream of Musi River, mostly dominated by industries activities producing a waste which flows to the river. Several studies on the effect of industries on the Musi River have been conducted , however , limmieted on physical dan chemical aspects of the water, not yet to evaluate its effect on aquatic organism. Aquatic organism such macrozoobenthos is important indicator of environmental changes since this organism records the history of processes occurred in the water. Study to assess water quality of the down stream Musi River based on physical, chemical water characteristics and macrozoobenthos community structure was conducted at may and september 2006 in Musi River located in South Sumatera Province of Indonesia. The study used inventory field survey. Eight sampling sites; Sejagung, Pulokerto, Jembatan Ampera, Sebokor, Pulau Burung, Upang, Pulau Payung, and Sungsang were selected based on the microhabitat difference. water sampling for physical and chemical parameters and sediment, and  macrozoobenthos were carried in each sampling site. Water sample was collected at a depth of 1.0 m from the water surface by using kemmerer water sampler. Some water quality parameters such as temperature, pH, and dissolved oxygen) were directly analyzed in the field, while the others such as total suspended solids, total dissolved solids, total organic carbon, dissolved organic carbon, biochemical oxygen demand, nitrate, and phosphate were analyzed in laboratory. Macrozoobenthos was collected at ten sampling points in each sampling sites using Ekman Dredge of 400 cm2 mouth opening. Macrozoobenthos from ten sampling points was composited, sorted and preserved with formalin 10%. Water quality parameters were analyzed with principle component analysis while macrozoobenthos abundance was analyzed with cluster. Results revealed that water quality at the down stream Musi River was classified into two groups. The first group was the heavy degraded sites from Sejagung to Pulau Burung, characterized by having high concentration of total dissolved solids, total organic carbon, and dissolved organic carbon, low abundance of macrozoobenthos with Tubifex sp. as the dominant species. The second group was light degraded sites from Upang to the mouth of Musi River, characterized by high concentration of total suspended solids and high macrozoobenthos abundance with Gammarus sp. as the dominant species.


Author(s):  
Paulus Leonardo Manurung ◽  
Rahmat Catur Wibowo ◽  
Ordas Dewanto

This research aims to determine the potential of the source rock in the Kujung and Cepu Formations in the North East Java Basin, using Total Organic Carbon (TOC). TOC is calculated using the Passey method. The Passey method is used by overlaying the sonic log and the resistivity log and determining the baseline to get the separation of Δlog resistivity, which is then used to predict the TOC log by including the LOM (Level of Organic Maturity) variable obtained from the data of vitrinite reflectance. After the TOC log value is obtained, a correlation is made with the TOC core value. The prediction result of TOC log in a PM-1 well is 2.16%, which means it has excellent quality. The prediction of TOC log in a PM-2 well is worth 2.68%, which means it has excellent quality. The correlation value between the TOC log and the TOC core of the PM-1 well is 0.67, which means the correlation is strong. In PM-2 well, the correlation between the TOC log and TOC core is 0.92, which means that the correlation is robust.


1981 ◽  
Vol 18 (12) ◽  
pp. 1838-1849 ◽  
Author(s):  
R. Bertrand ◽  
Y. Héroux

The paleoenvironment of deposition and the total organic carbon (TOC) content of two sedimentary rock sequences are studied. One has a Cenozoic age and is located on the Labrador shelf; the other is early Paleozoic and is found in the St. Lawrence Lowlands. In both sequences, variations in the paleoenvironments correspond to changes in the TOC content, despite important differences between them (age, tectonic and general paleogeographic contexts, lithologies, nature of the organic matter).A statistical processing of the data is used in order to show this parallelism between the paleoenvironment and the TOC content. In both cases, the higher the TOC content, the greater is the distance of the depositional environment from the shore. This result is in agreement with the conclusions of many other authors. This method may be very useful for detecting bathymetric variations in depositional environments, especially in monotonous sequences.


2020 ◽  
pp. 1-49
Author(s):  
Minh Tran ◽  
Tapan Mukerji ◽  
Allegra Hosford Scheirer

Over the past 20 years, oil and gas companies have turned their attention to producing petroleum directly from organic-rich shale. Successful exploration, appraisal, and production strategies for source rocks critically depend on reliable identification of their organic components (kerogen, in particular) and generation potential. There is mounting demand to evaluate organic richness in terms of quantity (i.e. total organic carbon) and quality (i.e. hydrogen index) from seismic data, which is usually the only source of information in the early development period of emerging shale plays. We delineated major seismic lithofacies on the Alaska North Slope using elastic, seismic, and petrophysical properties. We performed a well-established quantitative seismic interpretation workflow to integrate geochemical data in the lithofacies definition. Rock physics templates of seismic parameters, Acoustic Impedance, (AI), versus P-wave to S-wave velocity ratio, (VP/VS), are constructed for each lithofacies to assess variations in pore fluid and lithology. We proposed correlations between source rock properties (hydrogen index, total organic carbon) and petrophysical properties (bulk density, porosity, sonic velocity ratio) of the major lithofacies. These correlations, together with facies-specific rock physics templates, can be utilized to predict organic richness and source rock properties away from drilled wells. The models are validated by training data from 2 regional wells to observe their applicability on the Alaska North Slope.


2021 ◽  
Vol 9 (7) ◽  
pp. 717
Author(s):  
Emmanouil A. Varouchakis

In this technical note, a geostatistical model was applied to explore the spatial distribution of source rock data in terms of total organic carbon weight concentration. The median polish kriging method was used to approximate the “row and column effect” in the generated array data, in order for the ordinary kriging methodology to be applied by means of the residuals. Moreover, the sequential Gaussian simulation was employed to quantify the uncertainty of the estimates. The modified Box–Cox technique was applied to normalize the residuals and a cross-validation analysis was performed to evaluate the efficiency of the method. A map of the spatial distribution of total organic carbon weight concentration was constructed along with the 5% and 95% confidence intervals. This work encourages the use of the median polish kriging method for similar applications.


Sign in / Sign up

Export Citation Format

Share Document