scholarly journals Silica Supported Copper-Nickel Oxide Catalyst for Photodegradation of Methylene Blue

2019 ◽  
Vol 31 (12) ◽  
pp. 2891-2896
Author(s):  
A.K. Prodjosantoso ◽  
S. Kamilia ◽  
M.P. Utomo ◽  
K.S. Budiasih

Organic wastes are often harmful for organisms living in water. The compounds may toxic and or carcinogenic. Many methods have been applied to minimize the organic wastes in water, one of which is through fotodegradation process using catalysts. This report is about the use of (Cu-Ni)Ox@SiO2 catalyst for photodegration the methylene blue under the sunlight exposure. A serial method of XRD, SEM-EDX and UV-visible spectroscopy has been used in the study. The catalyst adsorption test was carried out in the dark environment, whilst the catalyst activity test in photodegradation of methylene blue was performed under the sunlight. The measurements on (Cu-Ni)Ox@SiO2 catalyst clearly indicate the presence of tridymite silica (SiO2) with the particle size around 9 nm. The silica band gap energy decreases with the adsorption of copper and nickel on the surface of silica. The adsorption follows the Langmuir adsorption isotherm. The (Cu-Ni)Ox@SiO2 is significantly catalyzed the degradation of methylene blue in water.

2020 ◽  
Vol 11 (1) ◽  
pp. 1-8
Author(s):  
Parbhej Ahamed ◽  
Mohammad Abu Yousuf

Mg, Cu and Zn metals have been used to tri-dope into the tetrahedral and octahedral sites of Li4Ti5O12 (LTO) electrode materials usually used in Li-ion battery. Li4-xMgxTi5-yZny/2Cuy/2O12 (i. x = 0, y = 0 ii. x = 0.05, y=0.10 iii. x= 0.10, y= 0.20 iv. x= 0.15, y= 0.20) materials were synthesized by solid state reaction using the stoichiometric amount of raw materials. The structural and morphological characteristics of the tri-doped Li4-xMgxTi5-yZny/2Cuy/2O12 materials were methodically analyzed by using Fourier transform infrared spectroscopy (FT-IR), UV-visible spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopic (SEM) techniques. The results of infrared spectroscopy exhibit bands of TO6 octahedra and Ti-O-Ti vibrations. Band gap energy calculation from UV-visible spectroscopy demonstrates a critical point of doping. Beyond this point band gap energy has been found to increase upon tri-doping. It has been observed from SEM images that all samples possess micro-porous and coral shape structures. The XRD patterns demonstrate that Mg, Cu and Zn metals tri-doped Li4-xMgxTi5-yZny/2Cuy/2O12 materials have spinel structure as well as good crystallinity. Journal of Engineering Science 11(1), 2020, 01-08


Author(s):  
S. J. Pradeeba ◽  
K. Sampath

This research was carried out based on the significance of protecting the environment by preventing the contamination of water caused from effluents discharge from dyeing industries, effective nanocomposite were prepared to solve this problem. The poly(azomethine), ZnO, and poly(azomethine)/ZnO nanocomposites were prepared and characterized by Fourier transform-infrared spectroscopy, ultraviolet (UV)–visible spectroscopy, powder X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDAX), scanning electron Microscope (SEM), and transmission electron microscopy (TEM) techniques. Methylene blue (MB), Malachite green (MG), and Bismarck brown (BB) were degraded from water using poly(azomethine) (PAZ), zinc oxide (ZnO), PAZ/ZnO (PNZ) nanocomposites as photocatalyst in the presence of natural sunlight. The degradation efficiency and reaction kinetics were calculated, and the outcome of the photocatalytic experiments proved that the PAZ/ZnO nanocomposites reveals excellent photocatalytic activity and effective for decolorization of dye containing waste water than PAZ and ZnO in the presence of natural sunlight. The maximum degradation efficiency 97%, 96%, and 95% was obtained for PNZ nanocomposites at optimum dosage of catalyst as 500 mg and 50 ppm of MB, MG, and BB dye concentration, respectively. The maximum degradation time was 5 h. After photocatalytic study, the samples were characterized by Fourier-transform infrared spectroscopy (FT-IR) and UV–visible spectroscopy.


2018 ◽  
Vol 18 (3) ◽  
pp. 403 ◽  
Author(s):  
Eko Sri Kunarti ◽  
Indriana Kartini ◽  
Akhmad Syoufian ◽  
Karolina Martha Widyandari

Synthesis of magnetic photocatalyst, Fe3O4/TiO2-Co, with characterization and photoactivity examination have been conducted. The synthesis was initiated by preparation of Fe3O4 particles using coprecipitation method. The Fe3O4 particles were then coated with TiO2-Co at a various ratio of Fe3O4:TiO2 and concentration of Co(II) dopant. The Fe3O4/TiO2-Co was characterized by FTIR, XRD, TEM, SEM-EDX, VSM, and SR UV-visible methods. Photoactivity of the Fe3O4/TiO2-Co was carried out using methylene blue as a target molecule in degradation reaction within a batch system. By using optimum conditions, the degradation of methylene blue solution was performed under exposure to UV, visible light and dark condition. Results showed that the Fe3O4/TiO2-Co formation was confirmed by the presence of Fe3O4 and anatase diffraction peaks in the X-ray diffractogram. SR UV-Vis spectra indicated that the Fe3O4/TiO2-Co was responsive to visible light. Band gap energy of the Fe3O4/TiO2-Co with dopant concentration of 1; 5; 10 and 15% were 3.22; 3.12; 3.09 and 2.81 eV, respectively. The methylene blue solution can be well photodegraded at a pH of 10 for 210 min. The Fe3O4/TiO2-Co has the highest ability to methylene blue photodegradation with dopant concentration of 10% gave degradation yield of 80.51 and 95.38% under UV and visible irradiation, respectively.


2020 ◽  
Author(s):  
Juliya Acha Parambil ◽  
Abdul Mujeeb V.M ◽  
S. Zh. Karazhanov ◽  
Jayaram Peediyekkal

Abstract The photocatalytic degradation of methylene blue in aqueous solutions is enhanced significantly by formulating multiphase TiO2/ZnO/Fe2O3 nanocomposites. The photocatalytic activity of unary TiO2, binary TiO2/ZnO, and ternary TiO2/ZnO/Fe2O3 compounds are compared and reported. Using TiO2/ZnO/Fe2O3, methylene blue degradation became rapid and the reaction followed first-order kinetics. The consequences of the phase transition, surface features, and optical properties are compared and elucidated. The reduced photoluminescence intensity and decreased optical band gap energy in tertiary compounds impose higher degradation of methylene blue under irradiation.


2015 ◽  
Vol 68 (7) ◽  
pp. 1129 ◽  
Author(s):  
Pei Wen Koh ◽  
Leny Yuliati ◽  
Hendrik O. Lintang ◽  
Siew Ling Lee

The amount of rutile phase in chromium-doped titania photocatalyst was controlled by varying stirring time (0.5–2.0 h) at room temperature during a sol–gel synthesis process. The percentage of rutile phase increased from 15.1 % to 28.6 % when stirring time was prolonged from 0.5 to 1.5 h. Further increases in the stirring time had negligible effect on the rutile phase amount. As evidenced by analyses using diffuse reflectance ultraviolet–visible spectroscopy and X-ray photoelectron spectroscopy, a sufficient stirring time was important for more substitution of Cr3+ for Ti4+ in the lattice, resulting in anatase-to-rutile phase transformation. The formation of more rutile phase in Cr-doped TiO2 not only reduced the band gap energy, but also induced surface defects that retarded electron–hole recombination. It has been demonstrated that the Cr-doped TiO2 prepared with a stirring time of 1.5 h possessed the lowest band gap energy of 1.89 eV, and hence it achieved the highest photodegradation of methylene blue under visible light irradiation.


2020 ◽  
Vol 53 (4) ◽  
pp. 972-981 ◽  
Author(s):  
G. Durgababu ◽  
G. J. Nagaraju ◽  
G. Bhagavannarayana

Good quality single crystals of 2,4-dinitrophenol (DNP)-doped tristhioureazinc(II) sulfate (ZTS) were successfully grown by employing the simple and cost effective slow-evaporation solution technique. To study the effect of doping on various device properties, the grown single crystals were subjected to powder X-ray diffraction (PXRD), high-resolution XRD, thermogravimetric analysis (TGA), Vickers hardness testing, and UV–visible, photoluminescence (PL) and Fourier transform IR (FTIR) spectroscopy techniques. The crystal structure of DNP-doped ZTS bulk single crystals remained the same as the crystal structure of ZTS. However, the changes in intensities of the diffraction peaks in the PXRD spectra indicated the incorporation of dopants into the crystalline matrix. FTIR studies confirm the incorporation of dopants into the crystalline matrix, shown by the shifting of certain prominent absorption bands towards higher energy. This also indicated the induced useful strain due to doping, leading to charge transfer and the enhancement of nonlinear optical properties. The cut-off wavelength and optical band gap energy of pure ZTS and DNP-doped ZTS crystals were studied by UV–visible absorption spectroscopy, revealing a slight reduction in the optical band gap energy due to doping, which in turn revealed the enhancement of the optical range. PL studies revealed an enhanced optical range of photoluminescence in ZTS crystals. Second harmonic generation (SGH) studies carried out by the Kurtz powder technique revealed the enhancement of SHG value due to DNP doping. To ensure the thermal stability and mechanical strength of the grown crystals with doping (required from the point of view of device applications), TGA and Vicker's hardness studies were performed.


2019 ◽  
Vol 32 (1) ◽  
pp. 115-121
Author(s):  
Chandan Adhikari ◽  
Mandeep Kaur ◽  
Ravichandran

In this study, an efficient sunlight triggered dye degradation was demonstrated using methylene blue as a model dye and bismuth oxychloride nanoparticles were used as photocatalyst. Two different types of nanoparticles, nanoflower and nanodisk, were prepared to understand the effect of morphology on the photocatalysis. Both the particles were prepared following a straightforward and easy methodology from readily available chemicals. The particles were characterized using scanning electron microscope, Fourier transformed infrared spectroscopy, powder X-ray diffraction. UV-visible spectroscopy and colorimeter were used to evaluate the photocatalytic activity of the catalyst. Both the nanoparticles were able to degrade the dye completely within 3-4 h under visible light. The photocatalytic rate constant analysis demonstrates that out of two morphology, nanoflower is found to be more effective than nanodisk towards dye degradation. The sunlight was also used to understand whether the photocatalyst can degrade the dye or not in presence of sunlight only. Both nanoparticles were able to degrade the dye 100 % in presence of sunlight within maximum 4 h. The photocatalytic dye degradation in presence of sunlight was conducted in between 10 a.m. to 4 p.m. when the maximum amount of sunlight is available with high intensity and energy. The catalysts were 100 % active after the first cycle and upto four cycles the dye degradation efficiency remain around 60-80%. The study demonstrates that sunlight can degrade the dye in presence of these photocatalyst which clearly indicates its energy saving approach thus making it more economic and green methodology for the industries.


RSC Advances ◽  
2017 ◽  
Vol 7 (44) ◽  
pp. 27549-27557 ◽  
Author(s):  
Tokeer Ahmad ◽  
Ruby Phul ◽  
Parvez Alam ◽  
Irfan H. Lone ◽  
Mohd. Shahazad ◽  
...  

Delafossite CuCrO2 nanoparticles with band gap energy of 3.09 eV and surface area of 235 m2 g−1 were prepared by citrate precursor route showed enhanced catalytic degradation of methylene blue in H2O under the sunlight irradiation.


2017 ◽  
Vol 895 ◽  
pp. 33-36 ◽  
Author(s):  
Bouzid Boudjema ◽  
Radouane Daira ◽  
Abdenour Kabir ◽  
Rafika Djebien

Our work consists to the deposition of copper oxide (CuO) thin films onto glass substrates by the spray pyrolysis method. The precursor solution was copper chloride of 0.1 M and the deposition rate was 5 ml/h. The time of spray varied between 5 and 20 min and the substrate temperature was kept at 350°C. The structural, optical and electrical properties of CuO films were investigated, as a function of the spray time, by X-ray diffraction (XRD), Raman scattering, UV-visible spectroscopy in addition to the measurements of the thickness and the electrical resistivity. The obtained results indicated that our films were polycrystalline with a preferential orientation along the (111) planes. The peaks intensity as well as the grain size increased as a function of the spray time indicating the improvement of the films crystalline structure. The Raman spectroscopy confirmed the formation of the CuO phase. The UV-visible transmission varied between 36% and 53% and the band gap energy decreased from 2 to 1.72 eV as a function of the spray time. The electrical resistivity of the films decreased from 514 to 72 kΩcm and correlated with the decrease of the band gap energy and the increase of the grain size.


2019 ◽  
Vol 35 (4) ◽  
pp. 1414-1419 ◽  
Author(s):  
Anti Kolonial Prodjosantoso ◽  
Farrasiya Indika Shelma ◽  
Kun Sri Budiasih ◽  
Maximus Pranjoto Utomo

Photodegradation is a save and low cost methods to clean water bodies from some organic pollutants. The method has been developed in term of increasing the efficiency of the degradation capacity of photocatalyst. The photocatalyst working under visible light is the most desirable. The preparation of silica supported nickel-copper oxide [(Ni-Cu)Ox@SiO2] catalyst and the use of the catalyst in the photodegradation of methylene blue in the water are reported. The catalyst was prepared by impregnating the silica support into the mixture of nickel and copper salts, followed by calcination at 800○C for 4 hours. A series method of XRD, SEM-EDX, and UV-Vis Diffuse Reflectance has been used to characterize the catalyst. The catalyst adsorption test was undertaken in the dark, and the catalyst activity test for photodegradation of methylene blue was conducted under the sunlight. The XRD diffractogram of as prepared (Ni-Cu)Ox@SiO2 shows a weak-wide peak at 2θ = 21.8° indicating SiO2 tridymite, and has a crystallite size of 10.38 nm. The combination method of SEM and EDX confirms the formation of (Ni-Cu)Ox@SiO2. The (Ni-Cu)Ox@SiO2 catalyst has a relatively low bandgap energy and shows a good activity for photodegradation of blue methylene under sunlight. The adsorption of the methylene blue on the (Ni-Cu)Ox@SiO2 follows the Langmuir isotherm pattern.


Sign in / Sign up

Export Citation Format

Share Document