Synthesis and Characterization of Poly(azomethine)/ZnO Nanocomposite Toward Photocatalytic Degradation of Methylene Blue, Malachite Green, and Bismarck Brown

Author(s):  
S. J. Pradeeba ◽  
K. Sampath

This research was carried out based on the significance of protecting the environment by preventing the contamination of water caused from effluents discharge from dyeing industries, effective nanocomposite were prepared to solve this problem. The poly(azomethine), ZnO, and poly(azomethine)/ZnO nanocomposites were prepared and characterized by Fourier transform-infrared spectroscopy, ultraviolet (UV)–visible spectroscopy, powder X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDAX), scanning electron Microscope (SEM), and transmission electron microscopy (TEM) techniques. Methylene blue (MB), Malachite green (MG), and Bismarck brown (BB) were degraded from water using poly(azomethine) (PAZ), zinc oxide (ZnO), PAZ/ZnO (PNZ) nanocomposites as photocatalyst in the presence of natural sunlight. The degradation efficiency and reaction kinetics were calculated, and the outcome of the photocatalytic experiments proved that the PAZ/ZnO nanocomposites reveals excellent photocatalytic activity and effective for decolorization of dye containing waste water than PAZ and ZnO in the presence of natural sunlight. The maximum degradation efficiency 97%, 96%, and 95% was obtained for PNZ nanocomposites at optimum dosage of catalyst as 500 mg and 50 ppm of MB, MG, and BB dye concentration, respectively. The maximum degradation time was 5 h. After photocatalytic study, the samples were characterized by Fourier-transform infrared spectroscopy (FT-IR) and UV–visible spectroscopy.

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1144
Author(s):  
Konda Shireesha ◽  
Thida Rakesh Kumar ◽  
Tumarada Rajani ◽  
Chidurala Shilpa Chakra ◽  
Murikinati Mamatha Kumari ◽  
...  

This paper describes the synthesis and characterization of NiMgOH-rGO nanocomposites made using a chemical co-precipitation technique with various reducing agents (e.g., NaOH and NH4OH) and reduced graphene oxide at 0.5, 1, and 1.5 percent by weight. UV-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, a particle size analyzer, and cyclic voltammetry were used to characterize the composite materials. The formation of the NiMgOH-rGO nanocomposite with crystallite sizes in the range of 10–40 nm was inferred by X-ray diffraction patterns of materials, which suggested interlayers of Ni(OH)2 and Mg(OH)2. The interactions between the molecules were detected using Fourier-transform infrared spectroscopy, while optical properties were studied using UV-visible spectroscopy. A uniform average particle size distribution in the range of 1–100 nm was confirmed by the particle size analyzer. Using cyclic voltammetry and galvanostatic charge/discharge measurements in a 6 M KOH solution, the electrochemical execution of NiMgOH-rGO nanocomposites was investigated. At a 1 A/g current density, the NiMgOH-rGO nanocomposites prepared with NH4OH as a reducing agent had a higher specific capacitance of 1977 F/g. The electrochemical studies confirmed that combining rGO with NiMgOH increased conductivity.


2010 ◽  
Vol 1280 ◽  
Author(s):  
C. A. Morales ◽  
M. C. Castillo ◽  
Z. N. Díaz ◽  
S. J. González ◽  
V. O. Kharissova

AbstractIn this paper, the incorporation and release of two types of drugs was carried out in microgels of hydroxypropylcellulose/polyacrylamide (HPC/PAAM) and hydroxyethylcellulose/polyacrylamide (HEC/PAAM). The two drugs were NSAIDs (nonsteroidal, anti-inflammatory drugs)—one antipyretic and one analgesic—acetylsalicylic acid (aspirin, ASP) and iuprofen (IBU), respectively. First, the microgels were synthesized and characterized by Fourier Transform Infrared Spectroscopy (FTIR) in order to identify the presence of functional groups for each polymer. The incorporation of the drug was made by swelling the microgels in a drug solution and finally carrying out the release of the substances listed at 37° C. The results were obtained by UV-visible spectroscopy.


2019 ◽  
Vol 70 (8) ◽  
pp. 2747-2752
Author(s):  
Constantin Marutoiu ◽  
Ioan Bratu ◽  
Mircea Gelu Buta ◽  
Olivia Florena Nemes ◽  
Sergiu Petru Timbus(Monk Siluan) ◽  
...  

A two-sided wooden icon from a monastery in Transylvania was submitted for multidisciplinary investigations involving X-Ray Fluorescence, Radiographic Photographyand Fourier Transform Infrared Spectroscopy. The most important part of the icon is St. Nicholas wooden icon, painted over forty years ago. The spectroscopic methods used revealed the painting materials composition, the status of the wooden stage, and the presence of resins as varnish (Fourier Transform Infrared Spectroscopy). On one side, the St Nicholasicon was painted over an old icon, St. Arch. Michael, which was evidenced by X-Ray Photography. The obtained data can serve for the preservation and the restoration of these wooden icons.


2021 ◽  
pp. 152808372110592
Author(s):  
Vahid Shakeri Siavashani ◽  
Gursoy Nevin ◽  
Majid Montazer ◽  
Pelin Altay

Flexible sensors and wearable electronics have become important in recent years. A good conductive and flexible textile is needed to develop a commercial wearable device. Conductive polymers have generally been used with limitation in reducing the surface resistance to a certain amount. In this research, a method for fabricating a stretchable highly conductive cotton/lycra knitted fabric is introduced by treating the fabric with polypyrrole (PPy), silver nanoparticles (SNPs) composites, and post-treating with poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT:PSS). Polypyrrole and SNPs were in situ fabricated on the cotton/lycra fabric by consecutive redox reaction of silver nitrate and pyrrole and finally covered by PEDOT:PSS solution through dip-coating. The coated textile was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray mapping, and energy dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy confirmed PPy-SNPs (P-S) composites on the fabric surface. Fourier transform infrared spectroscopy results, X-ray mapping, EDAX, and XRD analysis also confirmed the P-S composites and PEDOT:PSS polymeric layer on the fabric. Morphological observation showed a layer of PEDOT:PSS on the P-S caused the higher connection of coating on textiles which resulted in the higher electrical conductivity (43 s/m). Also morphological observations showed penetration of the silver particles inside fibers which represented improving in attachment and stability of the coating on the fibers. Further, the electrical conductivity of PPy-SNPs-PEDOT:PSS coated textile increased under the tension. Hence, the stretchable and highly conductive knitted cotton/lycra fabric has potentiality to be used for fabricating the flexible sensors or wearable electronics.


Sign in / Sign up

Export Citation Format

Share Document