scholarly journals Synthesis, Characterization and Biological Activity of ONO Donor Schiff Base and its Metal Complexes

2022 ◽  
Vol 34 (2) ◽  
pp. 389-394
Author(s):  
R. Nalini ◽  
S.M. Basavarajaiah ◽  
N.G. Yernale ◽  
K. Ramakrishna Reddy

A new Schiff base ligand (E)-2-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)-N-(5- methyl-3-phenyl-1H-indol-2-yl)hydrazine carboxamide (L) (3) was synthesized by the reaction of N-(5-methyl-3-phenyl-1H-indol-2-yl)hydrazinecarboxamide (1) and 7-hydroxy-4-methyl-2-oxo-2Hchromene- 8-carbaldehyde (2). The Cu(II), Co(II), Ni(II) and Zn(II) metal complexes (4a-d) were synthesized and its structural elucidation was done by different spectral techniques. The Schiff base (3) behaves as ONO donor ligand and forms the complexes of the sort [M(L)(Cl)(H2O)2] for Cu(II) (4a) and Zn(II) (4d) and [M(L)2] for Co(II) (4b) and Ni(II) (4c). Compounds (3) and (4a-d) were tested in vitro for antimicrobial action, cytotoxicity property against Artemia salina and anti-tuberculosis assay against Mycobacterium tuberculosis (ATCC 25177). The metal complexes showed very good biological activity.

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Nagesh Gunvanthrao Yernale ◽  
Mruthyunjayaswamy Bennikallu Hire Mathada

A novel Schiff base ligandN-(4-phenylthiazol-2yl)-2-((2-thiaxo-1,2-dihydroquinolin-3-yl)methylene)hydrazinecarboxamide(L)obtained by the condensation ofN-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-thioxo-1,2-dihydroquinoline-3-carbaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), and Zn(II) complexes have been characterized by elemental analysis and various spectral studies like FT-IR,1H NMR, ESI mass, UV-Visible, ESR, TGA/DTA, and powder X-ray diffraction studies. The Schiff base ligand(L)behaves as tridentate ONS donor and forms the complexes of type [ML(Cl)2] with square pyramidal geometry. The Schiff base ligand(L)and its metal complexes have been screenedin vitrofor their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activity of ligand and its metal complexes were studied using plasmid DNA pBR322 as a target molecule by gel electrophoresis method. The brine shrimp bioassay was also carried out to study thein vitrocytotoxicity properties for the ligand and its metal complexes againstArtemia salina. The results showed that the biological activities of the ligand were found to be increased on complexation.


2020 ◽  
Vol 32 (7) ◽  
pp. 1768-1772
Author(s):  
Anita Rani ◽  
Manoj Kumar ◽  
Hardeep Singh Tuli ◽  
Zahoor Abbas ◽  
Vinit Prakash

The study describes the synthesis, characterization and biological activity of a novel Schiff base ligand and its transition metal complexes. The Schiff base ligand was obtained by a condensation reaction between 4-hydroxy-3-methoxybenzaldehyde (p-vanillin) and hydrazine hydrate using ethanol as solvent. A new series of Ni(II) and Fe(III) complexes were also derived by reaction of prepared Schiff base ligand with NiCl2 and FeCl3. Both the ligand and its metal complexes were characterized by solubility, melting point and elemental analysis. These compounds were further identified by analytical techniques, FTIR, NMR and mass spectrometry. The ligand and its transition metal complexes were also subjected to in vitro biological activities i.e. antimicrobial, antiangiogenic and DNA photo cleavage. For antimicrobial activity compounds were tested against two strains of bacteria and two strains of fungi. Different concentrations of prepared compounds were treated with fertilized chicken eggs and plasmid DNA to find out antiangiogenic and DNA photocleavage activity, respectively.


2021 ◽  
Vol 11 (1) ◽  
pp. 3249-3260

Herein, we describe the synthesis and characterization of a Schiff base ligand (E)-N'-(2-hydroxybenzylidene)-4-methoxybenzohydrazide (HBMB) and its Mn(II), Ni(II), and Cu(II) metal complexes (C1-C3) respectively. The ligand HBMB was synthesized by reacting condensation of salicylaldehyde and 4-methoxy benzohydrazide in a 1:1 molar ratio. The structure of HBMB and its metal complexes (C1-C3) were evaluated by using UV-Vis, FT-IR, 1H-NMR, mass spectroscopy as well as on the basis of elemental analysis, conductivity measurements, and thermogravimetric techniques (TGA). The synthesized molecules' tumoricidal properties were performed against human breast cancer (MCF-7) and colon cancer (HT 29) cell lines. The biological results indicated that the ligand, HBMB, and metal complexes possess dose-dependent selective cytotoxicity against the tested carcinoma cells. The synthesized compounds were further evaluated for their in vitro antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli), and fungal strains (Aspergillus niger).


2021 ◽  
Vol 8 (1) ◽  
pp. 74-80
Author(s):  
Lamia S. Ashoor ◽  
Rawa’a Abass Majeed ◽  
Rehab K. R. Al-Shemary

"1998 onwards, a span reporting 1000s of studies depicts the ever-increasing Schiff bases and their complexes applicability; this study genetically tests the research of the last 20 years. The variety of these molecules structural has made them obtainable for a so broad ambit for implementations of biological. They are eminent and because of this unique feature they find their position in the quantitative and qualitative calculation of metals in the aqueous medium. It demonstrated to be prominent catalysts and showed an enjoyable effect of fluorescence. Definitively, Schiff base fissures gotten situation of a unique during bio-experiments and in vitro to develop drugs with a large number of biological structures containing parasites, fungi, viruses, cancer cells, bacteria, etc.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Riyadh M. Ahmed ◽  
Enaam I. Yousif ◽  
Hasan A. Hasan ◽  
Mohamad J. Al-Jeboori

A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17-tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for NiIIand CuIIcomplexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strainStaphylococcus aureusand Gram negative bacteriaEscherichia colirevealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity ofPseudomonas aeruginosabacteria. There is therefore no inhibition zone.


2020 ◽  
Vol 10 (5) ◽  
pp. 82-85
Author(s):  
Kamel Mokhnache ◽  
Salim Madani ◽  
Noureddine Charef

The ability to breathe and generate adenosine triphosphate is necessary to the persistence, physiology and pathogenesis of Mycobacterium tuberculosis that causes TuB. By doing a theoretical study of a chemical compound, Schiff Base 2,2'-{(5-amino-1,3-phenylene) bis[nitrilo(E)methylylidene]}dibenzene-1,4-diol, where almost all biological activities have been studied theoretically exploiting a computer software PASS (Prediction of Activity Spectra for Substance) for enhancing Computer Aided Drug Designing, as well as studying the class of toxicity in the human body by GUSAR software, which showed biological activity against the tuberculosis epidemic that killed many people, and a protocol was proposed for prepared and study of the properties of this compound. Keywords: GUSAR software, Synthesis, Schiff base, Tuberculosis, Toxicity, PASS prediction.


Sign in / Sign up

Export Citation Format

Share Document