scholarly journals Study of a Five-Phase AC Driven Spherical Motor with Oscillatory Movement

Author(s):  
Toshiyuki ISHIDA ◽  
Akio GOFUKU ◽  
Tomoaki YANO ◽  
Nagayoshi KASASHIMA
2021 ◽  
Vol 11 (15) ◽  
pp. 6872
Author(s):  
Chien-Sheng Liu ◽  
Yi-Hsuan Lin ◽  
Chiu-Nung Yeh

In keeping with consumers’ preferences for electromagnetic motors of ever smaller power consumption, it is necessary to improve the power efficiency of the electromagnetic motors used in unmanned aerial vehicles and robots without sacrificing their performance. Three-degree-of-freedom (3-DOF) spherical motors have been developed for these applications. Accordingly, this study modifies the 3-DOF spherical motor proposed by Hirata’s group in a previous study (Heya, A.; Hirata, K.; Niguchi, N., Dynamic modeling and control of three-degree-of-freedom electromagnetic actuator for image stabilization, IEEE Transactions on Magnetics 2018, 54, 8207905.) to accomplish a 3-DOF spherical motor for camera module with higher torque output in the large rotation angle. The main contribution of this study is to improve the static torque in the X- and Y-axes with an improved electromagnetic structure and a particular controlling strategy. In the structural design, eight symmetrical coils with specific coil combination are used instead of conventional four symmetrical coils. In this study, the development of the proposed 3-DOF spherical motor was constructed and verified by using a 3D finite-element method (3D FEM). The simulation results show that the proposed 3-DOF spherical motor has higher torque output in the large rotation angle when compared to the original 3-DOF spherical motor.


2019 ◽  
Vol 9 (10) ◽  
pp. 2070
Author(s):  
Hongxing Wei ◽  
Kaichao Li ◽  
Dong Xu ◽  
Wenshuai Tan

In single incision laparoscopic surgery (SILS), because the laparoscope and other surgical instruments share the same incision, the interferences between them constrain the dexterity of surgical instruments and affect the field of views of the laparoscope. Inspired by the structure of the spherical motor and the driving method of an intraocular micro robot, a fully inserted laparoscopic robot system is proposed, which consists of an inner laparoscopic robot and external driving device. The position and orientation control of the inner laparoscopic robot are controlled by a magnetic field generated by the driving device outside the abdominal wall. The instrumental interferences can be alleviated and better visual feedback can be obtained by keeping the laparoscopic robot away from the surgical incision. To verify the feasibility of the proposed structure and explore its control method, a prototype system is designed and fabricated. The electromagnetism model and the mechanical model of the laparoscopic robot system are established. Finally, the translational, rotational, and deflection motion of the laparoscopic robot are demonstrated in practical experiment, and the accuracy of deflection motion of the laparoscopic robot is verified in open-loop condition.


2012 ◽  
Vol 197 ◽  
pp. 55-59 ◽  
Author(s):  
Nan Jiang ◽  
Jun Biao Liu

As a kind of piezo actuator, impact drive mechanism (IDM) has advantages in precision machinery and instruments. Several IDMs are used in parallel to realize some motion mechanisms which have multi degrees of freedom (DOF). Two motion mechanisms are designed subsequently, and a spherical motor is designed and assembled in principle based on one of them. Experiment results reveal that this design method is feasible, but some problems exist, for example, vibration is serious. These problems should be solved in follow-up study.


2017 ◽  
Vol 11 ◽  
pp. 146-161 ◽  
Author(s):  
Jitendra Kumar Singh ◽  
Gauri Shenkar Seth ◽  
S. Ghousia Begum

In the present research study a mathematical analysis has been presented for unsteady MHD natural convective flow of a rotating fluid over an infinite vertical plate immersed in a fluid saturated porous medium with oscillating free-stream. The effects of Hall and ion-slip currents also considered on the fluid flow. The unsteady MHD flow over the vertical plate is induced due to thermal and concentration buoyancy forces and oscillatory movement of the free-stream. The partial differential equations governing the motion for the fluid flow are solved analytically. The effects of various pertinent flow parameters on the fluid velocity, fluid temperature and species concentration are presented in graphical form whereas that on skin friction and rate of heat and mass transfer at the plate are presented in tabular form. An interesting observation recorded from the present analysis that there appears reversal flow in the secondary flow direction due to presence of thermal and/or concentration buoyancy forces. However, in the absence of both reversals flow does not exist in the secondary flow direction. It is also noted that the thickness of momentum boundary layer decreases with rise in frequency of oscillations of the free-stream.


2020 ◽  
Vol 42 ◽  
pp. e1
Author(s):  
Cristiano Rocha da Cunha ◽  
Lúcio Ângelo Vidal ◽  
Guilherme Tales da Silva ◽  
Ruth Silva Pereira ◽  
Rita Santana Ramos Silva ◽  
...  

Knowing the g-value of acceleration of gravity is of paramount importance in various analyzes, and there are several ways of obtaining it experimentally. Here, searching for resources that are easy to apply in high school classrooms, the authors opted for the observation of a simple pendulum, performing a series of measurements of the pendulum period and applying them to the equations (appropriately manipulated for this experiment) of this oscillatory movement. The experiment was carried out in four steps: one with a mass of 10 grams and three with a mass of 20 grams; two with ten swings, one with fifteen and one with twenty. As a result, four values of local acceleration were estimated,which were compared, using the theory of errors, with the value made available in the literature. With these data, the feasibility of using this device in the teaching-learning process was verified, given its ease of handling and assembly, its low cost and its negligible error with the value of the literature.


Sign in / Sign up

Export Citation Format

Share Document