scholarly journals Biocompatibility of Medical Devices - A Review

2021 ◽  
Vol 10 (36) ◽  
pp. 3152-3158
Author(s):  
Ramya Shree Gangadhar ◽  
Balamuralidhara V ◽  
Rajeshwari S.R.

BACKGROUND Biomaterial is defined as "any substance or combination of medicine, artificial or natural origin, which can be used at any time, in whole or part by a system that controls, adds to, or restores any tissue, organ or function". ISO 10993-1: 2018 standard defines bio compliance law as "the ability of a medical device or tool to perform a selected program with the acceptable response of experts". Incompatible factors cause chemical reactions in patients, with little or no side effects. The body can respond in a sort of way after the installation of medical devices, so testing and improvement is important here. Therefore, testing and improvement in this field are important. Biocompatibility is required for any significant use of components or materials in medical devices. Inconsistent factors create negative biological responses in patients, which may have serious consequences. Biomaterials are substances utilized in medical devices, especially in applications where the device is touched, temporarily embedded, or permanently implanted within the body. Because of the significant impact of biocompatibility, many countries have imposed regulations on medical device manufacturers to meet biocompatibility specifications. Here is a brief explanation about the biocompatibility and incompatibility parameters of medical devices with a human body and its need for biocompatibility of medical devices with the human body. Medical devices have improved doctors' ability to diagnose and treat disease, which has led to significant improvements in health and quality of life. Thus, medical devices are prone to various incompatibility issues and procedures that affect the biological environment must be followed. KEY WORDS Biocompatibility, Material Interactions, Sterilization, Medical devices, Biocompatibility Testing, Incompatibility Factors.

2021 ◽  
Author(s):  
Magdalena Görtz ◽  
Michael Byczkowski ◽  
Mathias Rath ◽  
Viktoria Schütz ◽  
Philipp Reimold ◽  
...  

BACKGROUND While digital and data-based technologies are widespread in various industries in the context of Industry 4.0, the use of smart, connected devices in healthcare is still in its beginnings. Innovative solutions for the medical environment suffer from difficult access to medical device data and high barriers for market entry due to proprietary systems. OBJECTIVE In the proof-of-concept project OP 4.1, we show the business viability of connecting and augmenting medical devices and data through software add-ons by giving companies a technical and commercial platform for the development, implementation, distribution, and billing of innovative software solutions. METHODS The creation of a central platform prototype requires the collaboration of several independent market contenders, amongst them medical users, software developers, medical device manufacturers, and platform providers. A dedicated consortium of clinical and scientific partners as well as industry partners was established. RESULTS We demonstrate the successful development of the prototype of a user-centric, open, and extensible platform for the intelligent support of processes starting with the operation room. By connecting heterogeneous data sources and medical devices from different manufacturers and making them accessible for software developers and medical users, the cloud-based platform OP 4.1 enables the augmentation of medical devices and procedures through software-based solutions. The platform also allows for the demand-oriented billing of applications and medical devices, thus permitting software-based solutions to fast-track their economic development and become commercially successful. CONCLUSIONS The technology and business platform OP 4.1 creates a multi-sided market for the successful development, implementation, distribution, and billing of new software solutions in the operation room and in the healthcare sector in general. Consequently, software-based medical innovation can be translated into clinical routine fast, efficiently, and cost-effectively, optimizing the treatment of patients through smartly assisted procedures.


Author(s):  
Yousef Abdulsalam ◽  
Dari Alhuwail ◽  
Eugene S. Schneller

The U.S. Food and Drug Administration has recently mandated that medical device manufacturers adopt Unique Device Identification (UDI) standards on their medical devices. The benefits that UDI brings to hospitals and patients is relatively obvious, including inventory transparency, product safety, product equivalency, business intelligence. However, adoption by manufacturers, who face the mandate, has been slow in part because the benefit to them is not as readily perceived. This study focuses on the incentives, barriers, and benefits that medical device manufacturers perceive in UDI adoption. This study seeks to understand which adoption pressures are driving manufacturers to act, and attempts to gauge the benefits to manufacturers from UDI adoption. Through survey methods, the evidence suggests that medical device manufacturers implement UDI largely as a response to the coercive and normative pressures they face. There continues to be a high level of uncertainty regarding the return on investment for the medical device manufacturers, particularly from the late adopters.


2019 ◽  
Vol 4 (6) ◽  
pp. 351-356 ◽  
Author(s):  
Tom Melvin ◽  
Marina Torre

Advances in medical device technology have been dramatic in recent years resulting in both an increased number of medical devices and an increase in the invasiveness and critical function which devices perform. Two new regulations entered into force in Europe in May 2017, the Medical Device Regulation (MDR) and the In Vitro Diagnostic Device Regulation (IVDR). These regulations will replace the current directives over the coming years. These regulations, for the first time introduce requirements relating to registries. Medical device manufacturers are required to have systematic methods for examining their devices once available on the market, by systematically gathering, recording and analysing data on safety and performance. Registries can assist public health protection in very practical ways, for example, to help urgently identify patients or devices. Registries can also be powerful tools for collecting and appraising real-world clinical evidence concerning medical devices. Clinical investigations are limited in terms of the sample size and the duration of follow-up which can reasonably be expected. Registries may also be the only available tool to examine rare adverse effects, sub-populations or for time durations which it is not possible or feasible to study in a clinical investigation. By ensuring that a core dataset is collected which can be compared to other registries or trial data, it is possible to pool data to better examine outcomes. There are a range of excellent initiatives which have aimed at ensuring the appropriate regulatory application of registry data. Cite this article: EFORT Open Rev 2019;4 DOI: 10.1302/2058-5241.4.180061


2019 ◽  
Author(s):  
Amira Dina Luthfiyyani

Abstract, There are several ways used by others to eat their food, one of which is using their own hands without cutlery. Eating with hands more people use this to make food tastier with the practicality of eating using hands is also one of the reasons many people like to use their hands as cutlery. The writing of this paper aims to find out how to eat by hand and cleanliness of food contamination and the quality of food consumed. The research method used was a literature study by analyzing the contents of eating using hands, body interaction, and the influence of eating using hands to understand the body. The results of this study indicate that eating using hands can affect the health of the human body.


Author(s):  
Katarzyna Kowalik ◽  
Natalia Miękus ◽  
Tomasz Bączek

Background: L-tryptophan is an essential amino acid, necessary for the human body to function. Its degradation occurs through two metabolic pathways. Approximately 95% of the L-tryptophan available in the body is converted via the kynurenine pathway, while the remainder is degraded via the serotonin pathway. Properly maintained balance between the concentrations of individual small molecular metabolites is extremely important to maintain homeostasis in the human body, and its disruption could lead to the development of numerous neurological, neurodegenerative, neoplastic, as well as cardiovascular diseases. Recent reports suggested that by controlling the levels of selected L-tryptophan metabolites (potential biomarkers), it is possible to diagnose numerous diseases, monitor their course and assess patient prognosis. Objective: The aim of this paper is to review the currently important clinical applications of selected biomarkers from the L-tryptophan metabolism pathways that would be helpful in early diagnosis, monitoring the course and treatment of serious diseases of affluence, which ultimately could improve the patients’ quality of life, as well as support targeted therapy of the aforementioned diseases. Conclusion: Since the biochemical biomarkers determination in body fluids presents the ideal minimally invasive tool in the patents’ diagnosis and prognostication, the topic is up-to-date and, importantly, emphasized the current trends and perspectives of application of analysis of selected L-tryptophan metabolites named kynurenine and serotonin-derived small compounds in the routine medical procedures.


Author(s):  
Brandon S. Sargent ◽  
Spencer P. Magleby ◽  
Brian D. Jensen ◽  
Larry L. Howell

This work presents two novel support systems used to help mitigate flexible device buckling during insertion such as the insertion of medical device into the body. These systems are collapsible to accommodate the changing length of the flexible device as it is inserted. They use tension in wires or geometry to provide systems with lateral stiffness used to support the device. Through modeling, the performance of these systems can be predicted and they can be designed to a desired performance. This was validated in the geometry-based support system. They provide systems with small operating volumes and part counts.


1988 ◽  
Vol 7 (4) ◽  
pp. 469-479 ◽  
Author(s):  
James M. Anderson

The goal of in vivo testing of a medical device is to determine the safety or biocompatibility of the device in a biological environment. Biocompatibility is the ability of a medical device to perform with an appropriate host response in a specific application. Biocompatibility assessment is considered to be a measure of the magnitude and duration of adverse alterations in homeostatic mechanisms that determine the host response. Perspectives are provided on the role of injury, tissue responses to medical devices, and blood responses to medical devices. The concept of the normal foreign body reaction is presented. The potential importance of the macrophage, an important component of the foreign body reaction, in controlling the biocompatibility in the in vivo environment is discussed.


2020 ◽  
Vol 10 (8) ◽  
pp. 2923 ◽  
Author(s):  
Jean-Pierre Alcaraz ◽  
Gauthier Menassol ◽  
Géraldine Penven ◽  
Jacques Thélu ◽  
Sarra El Ichi ◽  
...  

We discuss the perspectives of designing implantable medical devices that have the criterion of being symbiotic. Our starting point was whether the implanted device is intended to have any two-way (“duplex”) communication of energy or materials with the body. Such duplex communication extends the existing concepts of a biomaterial and biocompatibility to include the notion that it is important to consider the intended functional use of the implanted medical device. This demands a biomimetic approach to design functional symbiotic implantable medical devices that can be more efficient in mimicking what is happening at the molecular and cellular levels to create stable interfaces that allow for the unfettered exchanges of molecules between an implanted device and a body. Such a duplex level of communication is considered to be a necessary characteristic of symbiotic implanted medical devices that are designed to function for long periods of time inside the body to restore and assist the function of the body. We illustrate these perspectives with experience gained from implanting functional enzymatic biofuel cells.


2008 ◽  
Vol 16 (4) ◽  
pp. 509-528 ◽  
Author(s):  
Špela Ivekovič ◽  
Emanuele Trucco ◽  
Yvan R. Petillot

In this paper we address the problem of human body pose estimation from still images. A multi-view set of images of a person sitting at a table is acquired and the pose estimated. Reliable and efficient pose estimation from still images represents an important part of more complex algorithms, such as tracking human body pose in a video sequence, where it can be used to automatically initialise the tracker on the first frame. The quality of the initialisation influences the performance of the tracker in the subsequent frames. We formulate the body pose estimation as an analysis-by-synthesis optimisation algorithm, where a generic 3D human body model is used to illustrate the pose and the silhouettes extracted from the images are used as constraints. A simple test with gradient descent optimisation run from randomly selected initial positions in the search space shows that a more powerful optimisation method is required. We investigate the suitability of the Particle Swarm Optimisation (PSO) for solving this problem and compare its performance with an equivalent algorithm using Simulated Annealing (SA). Our tests show that the PSO outperforms the SA in terms of accuracy and consistency of the results, as well as speed of convergence.


Sign in / Sign up

Export Citation Format

Share Document